A132993 Triangle t(n,m) = P(n-m+1) * P(m+1) read by rows, 0<=m<=n, where P=A000041 are the partition numbers.
1, 2, 2, 3, 4, 3, 5, 6, 6, 5, 7, 10, 9, 10, 7, 11, 14, 15, 15, 14, 11, 15, 22, 21, 25, 21, 22, 15, 22, 30, 33, 35, 35, 33, 30, 22, 30, 44, 45, 55, 49, 55, 45, 44, 30, 42, 60, 66, 75, 77, 77, 75, 66, 60, 42, 56, 84, 90, 110, 105, 121, 105, 110, 90, 84, 56
Offset: 0
Examples
1; 2, 2; 3, 4, 3; 5, 6, 6, 5; 7, 10, 9, 10, 7; 11, 14, 15, 15, 14, 11; 15, 22, 21, 25, 21, 22, 15; 22, 30, 33, 35, 35, 33, 30, 22; 30, 44, 45, 55, 49, 55, 45, 44, 30; 42, 60, 66, 75, 77, 77, 75, 66, 60, 42; 56, 84, 90, 110, 105, 121, 105, 110, 90, 84, 56;
Programs
-
Maple
A132993 := proc(n,m) combinat[numbpart](n-m+1)*combinat[numbpart](m+1) ; end proc: seq(seq(A132993(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Nov 11 2011
-
Mathematica
<< DiscreteMath`Combinatorica`; << DiscreteMath`IntegerPartitions`; Clear[t, n, m]; t[n_, m_] = PartitionsP[n - m + 1]*PartitionsP[m + 1]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]