A133044 Area of the spiral of equilateral triangles with side lengths which follow the Padovan sequence, divided by the area of the initial triangle.
1, 2, 3, 7, 11, 20, 36, 61, 110, 191, 335, 591, 1032, 1816, 3185, 5586, 9811, 17207, 30203, 53004, 93004, 163229, 286430, 502655, 882111, 1547967, 2716528, 4767152, 8365761, 14680930, 25763171, 45211271, 79340235, 139232356, 244335860, 428779421, 752455502, 1320467391
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2000
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,1,-1).
Programs
-
Mathematica
RecurrenceTable[{a[n + 6] == a[n + 5] + a[n + 4] + a[n + 3] - a[n + 2] + a[n + 1] - a[n], a[1] == 1, a[2] == 2, a[3] == 3, a[4] == 7, a[5] == 11, a[6] == 20}, a, {n, 1, 2000}] (* G. C. Greubel, Dec 17 2015 *) Rest@ CoefficientList[Series[x (x^3 + x + 1)/((x^3 - x^2 + 2 x - 1) (x^3 - x - 1)), {x, 0, 38}], x] (* Michael De Vlieger, Feb 21 2018 *)
-
PARI
Vec((x^3+x+1)/((x^3-x^2+2*x-1)*(x^3-x-1)) + O(x^40)) \\ Andrew Howroyd, Feb 21 2018
Formula
From Colin Barker, Sep 18 2013: (Start)
Conjecture: a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6).
G.f.: x*(x^3+x+1) / ((x^3-x^2+2*x-1)*(x^3-x-1)).
(End)
From Félix Breton, Dec 17 2015: (Start)
a(n) = 2*p(n+4)*p(n+5) - p(n+2)^2 where p is the Padovan sequence (A000931). This establishes Colin Barker's conjecture, because
a(n) = a(n-1) + p(n+4)^2
= a(n-1) + (p(n+1) + p(n+2))^2
= a(n-1) + p(n+1)^2 + p(n+2)^2 + 2*p(n+1)*p(n+2) - p(n-1)^2 + p(n-1)^2
= a(n-1) + (a(n-3)-a(n-4)) + (a(n-2)-a(n-3)) + a(n-3) + (a(n-5)-a(n-6))
= a(n-1) + a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-6). (End)
Extensions
a(27) and beyond taken from G. C. Greubel's table. - Omar E. Pol, Dec 18 2015
a(589) in b-file corrected by Andrew Howroyd, Feb 21 2018
Comments