cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133095 Row sums of triangle A133094.

Original entry on oeis.org

1, 4, 9, 20, 43, 90, 185, 376, 759, 1526, 3061, 6132, 12275, 24562, 49137, 98288, 196591, 393198, 786413, 1572844, 3145707, 6291434, 12582889, 25165800, 50331623, 100663270, 201326565, 402653156, 805306339, 1610612706, 3221225441, 6442450912, 12884901855, 25769803742, 51539607517
Offset: 1

Views

Author

Gary W. Adamson, Sep 09 2007

Keywords

Examples

			a(4) = 20 = sum of row 4 terms of triangle A133094: (7 + 7 + 5 + 1).
a(4) = 20 = (1, 3, 3, 1) dot (1, 3, 2, 4) = (1 + 9 + 6 + 4).
		

Crossrefs

Programs

  • Magma
    [1] cat [3*2^(n - 1) - n: n in [2..50]]; // G. C. Greubel, Oct 21 2017
  • Mathematica
    Join[{1}, Table[ 3*2^(n - 1) - n, {n, 2, 50}]] (* G. C. Greubel, Oct 21 2017 *)
    LinearRecurrence[{4,-5,2},{1,4,9,20},50] (* Harvey P. Dale, Aug 09 2022 *)
  • PARI
    concat(1, for(n=1,50, print1(3*2^(n - 1) - n, ", "))) \\ G. C. Greubel, Oct 21 2017
    

Formula

Binomial transform of [1, 3, 2, 4, 2, 4, 2, 4, ...].
From G. C. Greubel, Oct 21 2017: (Start)
a(n) = 3*2^(n-1) - n, for n >= 2.
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: x*(1 - 2*x^2 + 2*x^3)/((1-2*x)*(1-x)^2).
E.g.f.: (3*exp(2*x) - 2*x*exp(x) - 2*x - 3)/2. (End)
a(n) = A123720(n) for n >= 2. - Georg Fischer, Nov 02 2018

Extensions

Terms a(11) onward added by G. C. Greubel, Oct 21 2017