A133101 Expansion of f(x^2, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + x^3 + x^9 + x^11 + x^21 + x^24 + x^38 + x^42 + x^60 + x^65 + ... G.f. = q + q^81 + q^121 + q^361 + q^441 + q^841 + q^961 + q^1521 + q^1681 + ...
Links
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^5] QPochhammer[ -x^3, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1,n, 1 + x^k*[ -1, 0, 1, 1, 0][k%5 + 1], 1 + x * O(x^n)), n))};