cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A122190 Expansion of q^(-1/4) * eta(q^2) * eta(q^5)^3 / (eta(q) * eta(q^10)) in powers of q.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 1, 2, 0, 2, 2, 1, 1, 2, 0, 2, 2, 0, 2, 0, 1, 2, 2, 0, 2, 2, 0, 2, 2, 2, 1, 1, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0, 3, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 4, 1, 2, 2, 0, 2, 1, 0, 0, 2, 2, 2, 2, 0, 2, 2, 0, 3, 2, 0, 0, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2, 2, 4, 0, 0, 2, 0, 2, 2, 1, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 24 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution product of A133100 and A133101. - Michael Somos, Feb 10 2015

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + x^6 + 2*x^7 + 2*x^9 + 2*x^10 + x^11 + ...
G.f. = q + q^5 + q^9 + 2*q^13 + 2*q^17 + q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^5]^3 / (QPochhammer[ x] QPochhammer[ x^10]), {x, 0, n}]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^5 + A)^3 / (eta(x + A) * eta(x^10 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 4*n + 1; A=factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p==5, 1, if( p%4==1, e+1, (1 + (-1)^e) / 2))))))};

Formula

Euler transform of period 10 sequence [ 1, 0, 1, 0, -2, 0, 1, 0, 1, -2, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(5^e) = 1, b(p^e) = e+1 if p == 1 (mod 4), b(p^e) = (1 + (-1)^e)/2 if p == 3 (mod 4).
G.f.: Product_{k>0} (1 - x^(5*k))^2 * (1 + x^k) / (1 + x^(5*k)).
G.f.: Sum_{k>=0} a(k) * x^(4k+1) = Sum_{k>0 odd} x^k * (1 - x^(2*k)) * (1 - x^(6*k)) / (1 + x^(10*k)).
Expansion of f(x, x^4) * f(x^2, x^3) in powers of x where f() is the Ramanujan two-variable theta function.
Expansion of psi(x)^2 - x * psi(x^5)^2 in powers of x where psi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (40 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133573.
a(n) = A053694(4*n) = A094247(4*n + 1).
a(3*n + 2) = a(5*n + 1) = a(n). - Michael Somos, Feb 10 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/5 = 1.256637... (A019694). - Amiram Eldar, Dec 29 2023
Showing 1-1 of 1 results.