A133102 Number of partitions of n^3 into n distinct nonzero squares.
1, 0, 0, 0, 0, 3, 5, 20, 56, 112, 268, 618, 1922, 8531, 29021, 100407, 321531, 899618, 2937312, 9295401, 31615059, 117365818, 403433963, 1417579281, 4848439367, 15960316056, 55180971700, 190251417034, 670818005444, 2429973932322
Offset: 1
Keywords
Examples
a(6) = 3 because there are 3 ways to express 6^3 = 216 as a sum of 6 distinct nonzero squares: 216 = 1^2 + 2^2 + 4^2 + 5^2 + 7^2 + 11^2 = 1^2 + 3^2 + 5^2 + 6^2 + 8^2 + 9^2 = 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 9^2.
Links
- Robert Gerbicz, May 09 2008, Table of n, a(n) for n = 1..40
Crossrefs
Programs
-
PARI
a(i, n, k)=local(s, j); if(k==1, if(issquare(n) && n
Extensions
2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 16 2007
More terms from Robert Gerbicz, May 09 2008