cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133111 a(n) = (1/(1!*2!*3!*4!))*Sum_{1 <= x_1, x_2, x_3, x_4 <= n} |det V(x_1,x_2,x_3,x_4)|, where V(x_1,x_2,x_3,x_4) is the Vandermonde matrix of order 4.

Original entry on oeis.org

0, 0, 0, 1, 16, 126, 672, 2772, 9504, 28314, 75504, 184041, 416416, 884884, 1782144, 3426384, 6325632, 11267532, 19442016, 32605881, 53300016, 85131970, 133138720, 204246900, 307850400, 456528150, 666928080, 960846705, 1366537536, 1920285576, 2668289536
Offset: 1

Views

Author

Peter Bala, Sep 13 2007

Keywords

Comments

Compare with A000292 and A040977 for the corresponding sums for the Vandermonde matrices of orders 2 and 3 respectively.
a(n) = sum of dimensions of all irreducible polynomial representations of GL(4) whose highest weight is of the form (m1 >= m2 >= m3 >= m4) and m1 <= n. - Oded Yacobi (oyacobi(AT)math.ucsd.edu), Jul 24 2008

Crossrefs

Programs

  • Magma
    A133111:= func< n | Binomial(n+2,5)*Binomial(n+4,5)/21 >;
    [A133111(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Mathematica
    a[n_] := n^2 (n^2 - 1)^2 (n^2 - 4) (n^2 - 9)/302400; Array[a, 30] (* Robert G. Wilson v, Sep 17 2007 *)
    Rest@ CoefficientList[ Series[x^4*(1 + 5 x + 5 x^2 + x^3)/(1 - x)^11, {x, 0, 30}], x] (* Robert G. Wilson v, Sep 17 2007 *)
  • SageMath
    def A133111(n): return binomial(n+2,5)*binomial(n+4,5)//21
    print([A133111(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

a(n) = (1/288)*Sum_{1 <= i,j,k,l <= n} |(i-j)(i-k)(j-k)(i-l)(j-l)(k-l)|.
G.f.: x^4*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^11 .
a(n) = n^2*(n^2 - 1)^2*(n^2 - 4)*(n^2 - 9)/302400.
a(n) = Sum_{i + j + k + l = n} i*j*k^2*l^3.
a(n) = (1/21)*A107396(n-3). - G. C. Greubel, Feb 09 2025

Extensions

More terms from Robert G. Wilson v, Sep 17 2007