A133111 a(n) = (1/(1!*2!*3!*4!))*Sum_{1 <= x_1, x_2, x_3, x_4 <= n} |det V(x_1,x_2,x_3,x_4)|, where V(x_1,x_2,x_3,x_4) is the Vandermonde matrix of order 4.
0, 0, 0, 1, 16, 126, 672, 2772, 9504, 28314, 75504, 184041, 416416, 884884, 1782144, 3426384, 6325632, 11267532, 19442016, 32605881, 53300016, 85131970, 133138720, 204246900, 307850400, 456528150, 666928080, 960846705, 1366537536, 1920285576, 2668289536
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
Programs
-
Magma
A133111:= func< n | Binomial(n+2,5)*Binomial(n+4,5)/21 >; [A133111(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
-
Mathematica
a[n_] := n^2 (n^2 - 1)^2 (n^2 - 4) (n^2 - 9)/302400; Array[a, 30] (* Robert G. Wilson v, Sep 17 2007 *) Rest@ CoefficientList[ Series[x^4*(1 + 5 x + 5 x^2 + x^3)/(1 - x)^11, {x, 0, 30}], x] (* Robert G. Wilson v, Sep 17 2007 *)
-
SageMath
def A133111(n): return binomial(n+2,5)*binomial(n+4,5)//21 print([A133111(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025
Formula
a(n) = (1/288)*Sum_{1 <= i,j,k,l <= n} |(i-j)(i-k)(j-k)(i-l)(j-l)(k-l)|.
G.f.: x^4*(1 + 5*x + 5*x^2 + x^3)/(1 - x)^11 .
a(n) = n^2*(n^2 - 1)^2*(n^2 - 4)*(n^2 - 9)/302400.
a(n) = Sum_{i + j + k + l = n} i*j*k^2*l^3.
a(n) = (1/21)*A107396(n-3). - G. C. Greubel, Feb 09 2025
Extensions
More terms from Robert G. Wilson v, Sep 17 2007
Comments