cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133117 Fractal sequence based on comparison of {n * tau} with {i*tau} for i = 1 to F(2j) where F(2j) equals the first i for which {n*tau} <= {i*tau} as i goes from 1 to F(2j+2)-1 and F(2j) equals the insertion point of n into P(n-1). The fractional parts {i*tau} are all less than or equal to {F(2j-2)*tau} for 0 < i < F(2j), so there is no chance that an insertion point greater than n in the permutation of the first n-1 integers will be specified by this rule. The table, A132827, gives the insertion points for each n into the permutation P(n-1) of the first n integers.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 5, 4, 6, 2, 1, 3, 7, 5, 4, 6, 2, 1, 3, 7, 5, 4, 6, 2, 1, 3, 8
Offset: 1

Views

Author

Kenneth J Ramsey, Sep 13 2007

Keywords

Comments

This sequence is a modification of that in A054065 which gives the fractal series of the same permutation as the permutation of A132917 for which a couple of generating algorithms are given.

Examples

			The first few permutations are 1, 21, 213, 4213, 54213, 546213 since {6*tau} is greater than {1*Tau} but less than {3*Tau}; and since of 0<i<7 only {3*tau} and {6*tau} are greater than {1*tau}
		

Crossrefs

Formula

See A132827.