cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133124 A007318 * [1, 2, 2, 3, 2, 3, 2, 3, 2, ...].

Original entry on oeis.org

1, 3, 7, 16, 35, 74, 153, 312, 631, 1270, 2549, 5108, 10227, 20466, 40945, 81904, 163823, 327662, 655341, 1310700, 2621419, 5242858, 10485737, 20971496, 41943015, 83886054, 167772133, 335544292, 671088611, 1342177250, 2684354529, 5368709088, 10737418207, 21474836446
Offset: 0

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Examples

			a(3) = (1, 3, 3, 1) dot (1, 2, 2, 3) = (1 + 6 + 6 + 3).
a(5) = 74 = 2^6 + 2^4 - 6 = 64 + 16 - 6.
		

Crossrefs

Programs

  • Magma
    [1] cat [5*2^(n - 1) - n -1: n in [1..50]]; // G. C. Greubel, Oct 21 2017
  • Mathematica
    Join[{1}, Table[5*2^(n-1) - n -1, {n,1,50}]] (* G. C. Greubel, Oct 21 2017 *)
    LinearRecurrence[{4,-5,2},{1,3,7,16},40] (* Harvey P. Dale, Jun 18 2024 *)
  • PARI
    concat(1, for(n=1,50, print1(5*2^(n - 1) - n - 1, ", "))) \\ G. C. Greubel, Oct 21 2017
    

Formula

Binomial transform of [1, 2, 2, 3, 2, 3, 2, 3, 2, ...].
a(n) = 5*2^(n-1) - (n+1), for n >= 1.
Row sums of triangle A133938. - Gary W. Adamson, Sep 29 2007
G.f.: 1 + x*(3-5*x+3*x^2)/((1-2*x)*(1-x)^2). - R. J. Mathar, Nov 14 2007
E.g.f.: (5*exp(2*x) - 2*(1+x)*exp(x) - 1)/2. - G. C. Greubel, Oct 21 2017

Extensions

Terms a(9) onward added by G. C. Greubel, Oct 21 2017