cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133138 Triangle T(n,k) of the coefficients of the polynomials Q(n,x)=(1+x)[(1+x)^(n-1)+x^(n-1)], Q(0,x)=2.

Original entry on oeis.org

2, 2, 2, 1, 3, 2, 1, 3, 4, 2, 1, 4, 6, 5, 2, 1, 5, 10, 10, 6, 2, 1, 6, 15, 20, 15, 7, 2, 1, 7, 21, 35, 35, 21, 8, 2, 1, 8, 28, 56, 70, 56, 28, 9, 2, 1, 9, 36, 84, 126, 126, 84, 36, 10, 2, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11, 2
Offset: 0

Views

Author

Paul Curtz, Sep 21 2007

Keywords

Examples

			Triangle T(n,k) begins:
n/k 0   1   2    3    4    5    6    7    8    9  10  11  12
0:  2
1:  2   2
2:  1   3   2
3:  1   3   4    2
4:  1   4   6    5    2
5:  1   5  10   10    6    2
6:  1   6  15   20   15    7    2
7:  1   7  21   35   35   21    8    2
8:  1   8  28   56   70   56   28    9    2
9:  1   9  36   84  126  126   84   36   10    2
10: 1  10  45  120  210  252  210  120   45   11   2
11: 1  11  55  165  330  462  462  330  165   55  12   2
12: 1  12  66  220  495  792  924  792  495  220  66  13   2
... - _Franck Maminirina Ramaharo_, May 18 2018
		

Crossrefs

Cf. A133135.

Programs

  • Mathematica
    q[n_] := (1+x)*((1+x)^(n-1) + x^(n-1)); t[n_, k_] := Coefficient[q[n], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)
  • Maxima
    Q(n, x) := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))$
    t(n,k) := ratcoef(expand(Q(n, x)), x, k)$
    for n:0 thru 20 do print(makelist(t(n, k), k, 0, n)); /* Franck Maminirina Ramaharo, May 18 2018 */

Formula

From R. J. Mathar, Jun 12 2008: (Start)
T(n,k) = A007318(n,k), 0 <= k < n-1.
T(n,k) = A007318(n,k)+1, n-1 <= k <= n.
Sum_{k=0..n} T(n,k) = A133140(n). (End)
T(n,k) = A007318(n,k) + A097806(n,k). - Franck Maminirina Ramaharo, May 18 2018

Extensions

Edited by R. J. Mathar, Jun 12 2008