cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A132391 Numbers whose square starts with 4 identical digits.

Original entry on oeis.org

2357, 2582, 3334, 4714, 5774, 6667, 8165, 8819, 9428, 10541, 10542, 10543, 10544, 10545, 14907, 14908, 14909, 18257, 18258, 18259, 21081, 21082, 21083, 23570, 23571, 25819, 25820, 27888, 27889, 29813, 29814, 31622, 33332, 33333
Offset: 1

Views

Author

Jonathan Vos Post, Aug 29 2007

Keywords

Examples

			Example: 2357^2 = 5555449.
		

Crossrefs

Programs

  • Maple
    R:= NULL: count:= 0:
    for d from 1 while count < 100 do
      for i from 1 to 9 do
        L:= i*1111*10^d;
        X:= [$ceil(sqrt(L)) .. floor(sqrt(L+10^d-1))];
        m:= nops(X);
        if m > 0 then
          count:= count+nops(X);
          R:= R, op(X);
        fi
    od od:
    R; # Robert Israel, Mar 12 2021
  • Mathematica
    Select[Range[10, 50000], Length[Union[Take[IntegerDigits[ #^2], 4]]] == 1 & ]
    (* or *)
    (* Here's a more generic Mathematica program that calculates the first q terms of squares starting with n identical digits *)
    n=4; q=30; t=Table[(10^n-1)*i/9, {i,1,9}]; u=Sqrt[Union[t,10*t]];
    v=Sqrt[Union[t+1, 10*(t+1)]]; k=1; While[s=Sort[Flatten[Table[Union
    [Table[Range[Ceiling[10^j*u[[i]]], f=10^j*v[[i]]; If[IntegerQ[f],
    f=f-1]; Floor[f]], {i,1,18}]], {j,0,k}]]]; Length[s]Hans Havermann, Aug 30 2007 *)
  • Python
    def aupto(limit):
      alst = []
      for m in range(34, limit+1):
        if len(set(str(m*m)[:4])) == 1: alst.append(m)
      return alst
    print(aupto(33333)) # Michael S. Branicky, Mar 12 2021

A119866 Numbers whose square starts with 5 identical digits.

Original entry on oeis.org

10541, 33334, 47141, 57735, 66667, 105409, 105410, 105411, 105412, 105413, 149071, 149072, 149073, 182574, 182575, 182576, 210818, 210819, 235702, 235703, 258198, 258199, 278886, 278887, 298141, 298142, 316227, 333332, 333333, 333334
Offset: 1

Views

Author

Zak Seidov, Aug 04 2006

Keywords

Examples

			10541^2=111112681, 33334^2=1111155556.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 100, 500000 ], Length[ Union[ Take[ IntegerDigits[ #^2 ], 5 ] ] ] == 1 & ] (* Jonathan Vos Post, Aug 29 2007 *)
Showing 1-2 of 2 results.