cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133189 Number of simple directed graphs on n labeled nodes consisting only of some cycle graphs C_2 and nodes not part of a cycle having directed edges to both nodes in exactly one cycle.

Original entry on oeis.org

1, 0, 1, 3, 9, 40, 210, 1176, 7273, 49932, 372060, 2971540, 25359411, 230364498, 2215550428, 22460391240, 239236043985, 2669869110856, 31134833803728, 378485082644400, 4786085290280275, 62838103267148790, 855122923978737876, 12042364529117844328
Offset: 0

Views

Author

Alois P. Heinz, Dec 17 2007

Keywords

Examples

			a(3) = 3, because there are 3 graphs of the given kind for 3 labeled nodes: 3->1<->2<-3,  2->1<->3<-2,  1->2<->3<-1.
		

References

  • A. P. Heinz (1990). Analyse der Grenzen und Möglichkeiten schneller Tableauoptimierung. PhD Thesis, Albert-Ludwigs-Universität Freiburg, Freiburg i. Br., Germany.

Crossrefs

2nd column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; add(binomial(n, k+k)*
          doublefactorial(k+k-1) *k^(n-k-k), k=0..floor(n/2))
        end:
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1) *binomial(j, 2) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 16 2015
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[Exp[x]x^2/2],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 23 2012 *)
    Table[Sum[BellY[n, k, Binomial[Range[n], 2]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * A006882(2*k-1) * k^(n-2*k).
E.g.f.: exp(exp(x)*x^2/2). - Geoffrey Critzer, Nov 23 2012