cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133267 Number of Lyndon words on {1, 2, 3} with an even number of 1's.

Original entry on oeis.org

2, 1, 4, 8, 24, 56, 156, 400, 1092, 2928, 8052, 22080, 61320, 170664, 478288, 1344800, 3798240, 10760568, 30585828, 87166656, 249055976, 713197848, 2046590844, 5883926400, 16945772184, 48881973840, 141214767876, 408513980160, 1183282368360, 3431518388960
Offset: 1

Views

Author

Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 03 2008

Keywords

Comments

A Lyndon word is the aperiodic necklace representative which is lexicographically earliest among its cyclic shifts. Thus we can apply the fixed density formulas: L_k(n,d)=sum L(n-d, n_1,..., n_(k-1)); n_1+...+n_(k-1)=d where L(n_0, n_1,...,n_(k-1))=(1/n)sum mu(j)*[(n/j)!/((n_0/j)!(n_1/j)!...(n_(k-1)/j)!)]; j|gcd(n_0, n_1,...,n_(k-1)). For this sequence, sum over n_0=even. Alternatively, a(n)=(sum mu(d)*3^(n/d)/n; d|n) - (sum mu(d)*(3^(n/d)-1)/(2n); d|n, d odd).

Examples

			For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only the first two and the last two have an even number of 1's. Thus a(3) = 4.
		

References

  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

Crossrefs

Programs

  • Maple
    with(numtheory): a:= n-> add(mobius(d) *3^(n/d), d=divisors(n))/n -add(mobius(d) *(3^(n/d)-1), d=select(x-> irem(x, 2)=1, divisors(n)))/ (2*n): seq(a(n), n=1..30);  # Alois P. Heinz, Jul 29 2011
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#]*(3^(n/#) - (1/2)*Boole[OddQ[#]]*(3^(n/#)-1))&]/n; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
  • PARI
    a133267(n) = sumdiv(n, d, moebius(d)*3^(n/d)/n - if (d%2, moebius(d)*(3^(n/d)-1)/(2*n))); \\ Michel Marcus, May 17 2018

Formula

a(1)=2; for n>1, if n=2^k for some k, then a(n) = ((3^(n/2)-1)^2)/(2*n). Otherwise, if n is even then a(n) = Sum_{d|n, d odd} mu(d)*(3^(n/d)-2*3^(n/(2*d)))/(2*n). If n is odd then a(n) = Sum_{d|n, d odd} mu(d)*(3^(n/d)-1)/(2*n).