cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133356 a(n) = 2*a(n-1) + 16*a(n-2) for n>1, a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 18, 52, 392, 1616, 9504, 44864, 241792, 1201408, 6271488, 31765504, 163874816, 835997696, 4293992448, 21963948032, 112631775232, 576686718976, 2955481841664, 15137951186944, 77563611840512, 397334442672128
Offset: 0

Views

Author

Philippe Deléham, Dec 21 2007

Keywords

Comments

Binomial transform of A001026 (powers of 17), with interpolated zeros .

Crossrefs

First differences of A161007.

Programs

Formula

G.f.: (1-x)/(1-2*x-16*x^2).
a(n) = Sum_{k=0..n} A098158(n,k)*17^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=17, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i<=j), A[i,j] = -1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = (4*i)^(n-1)*(4*i*ChebyshevU(n, -i/4) - ChebyshevU(n-1, -i/4)) = A161007(n) - A161007(n-1). - G. C. Greubel, Oct 15 2022