A133357 Number of 2-colorings of a 3 X n rectangle for which no subsquare has monochromatic corners.
1, 8, 50, 276, 1498, 8352, 46730, 260204, 1447890, 8062968, 44907298, 250082756, 1392637914, 7755351712, 43188407610, 240509081468, 1339353796226, 7458635202952, 41535888495186, 231306378487028, 1288106280145770, 7173247100732400, 39946606186601514
Offset: 0
Examples
a(1) = 8, because there are no conditions. a(2) = 50 because if the middle row is not monochromatic, the top and bottom rows are unconstrained, contributing 2*4*4. If the middle row is monochromatic, the top and bottom rows can each take on only 3 values contributing 2*3*3.
References
- J. Solymosi, "A Note on a Question of Erdos and Graham", Combinatorics, Probability and Computing, Volume 13, Issue 2 (March 2004) 263 - 267.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Sci.math, Discussion of a related problems
Programs
-
Maple
gf:= -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1)/ (24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..30); # Alois P. Heinz, Feb 18 2015
Formula
G.f.: -(x+1)*(8*x^7-12*x^6-2*x^5-16*x^4-30*x^3-15*x^2-4*x-1) / (24*x^8-4*x^7-46*x^6-66*x^5-74*x^4-25*x^3-7*x^2-3*x+1). - Alois P. Heinz, Feb 18 2015
Extensions
a(0), a(8)-a(22) from Alois P. Heinz, Feb 18 2015
Comments