cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133421 Image of n under one application of the "7x+1" map.

Original entry on oeis.org

8, 1, 1, 2, 1, 3, 50, 4, 3, 5, 78, 6, 92, 7, 5, 8, 120, 9, 134, 10, 7, 11, 162, 12, 5, 13, 9, 14, 204, 15, 218, 16, 11, 17, 7, 18, 260, 19, 13, 20, 288, 21, 302, 22, 15, 23, 330, 24, 344, 25, 17, 26, 372, 27, 11, 28, 19, 29, 414, 30, 428, 31, 21, 32, 13, 33, 470, 34, 23, 35, 498
Offset: 1

Views

Author

N. J. A. Sloane, Nov 27 2007

Keywords

Comments

The 7x+1 map sends x to x/2 if x is even, x/3 if x is odd and divisible by 3, x/5 if x is not divisible by 6 and divisible by 5, otherwise 7x+1.

Crossrefs

Programs

  • Mathematica
    Table[Nest[Which[EvenQ[#],#/2,Divisible[#,3],#/3,Divisible[#,5],#/5, True, 7#+1]&,n,1],{n,75}] (* Harvey P. Dale, Nov 05 2011 *)
  • PARI
    a(n)=if(n%2,if(n%3,if(n%5,7*n+1,n/5),n/3),n/2) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from _future_ import division
    def A133421(n):
        return n//2 if not n % 2 else (n//3 if not n % 3 else (n//5 if not n % 5 else 7*n+1)) # Chai Wah Wu, Mar 04 2018

Formula

From Chai Wah Wu, Mar 04 2018: (Start)
a(n) = 2*a(n-30) - a(n-60) for n > 60.
G.f.: x*(6*x^58 + x^57 + x^56 + 2*x^55 + x^54 + 3*x^53 + 48*x^52 + 4*x^51 + 3*x^50 + 5*x^49 + 76*x^48 + 6*x^47 + 90*x^46 + 7*x^45 + 5*x^44 + 8*x^43 + 118*x^42 + 9*x^41 + 132*x^40 + 10*x^39 + 7*x^38 + 11*x^37 + 160*x^36 + 12*x^35 + 5*x^34 + 13*x^33 + 9*x^32 + 14*x^31 + 202*x^30 + 15*x^29 + 204*x^28 + 14*x^27 + 9*x^26 + 13*x^25 + 5*x^24 + 12*x^23 + 162*x^22 + 11*x^21 + 7*x^20 + 10*x^19 + 134*x^18 + 9*x^17 + 120*x^16 + 8*x^15 + 5*x^14 + 7*x^13 + 92*x^12 + 6*x^11 + 78*x^10 + 5*x^9 + 3*x^8 + 4*x^7 + 50*x^6 + 3*x^5 + x^4 + 2*x^3 + x^2 + x + 8)/(x^60 - 2*x^30 + 1). (End)

Extensions

More terms from Sean A. Irvine, Mar 29 2010
Comment clarified by Chai Wah Wu, Mar 04 2018