cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000229 a(n) is the least number m such that the n-th prime is the least quadratic nonresidue modulo m.

Original entry on oeis.org

3, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 422231, 701399, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 175244281, 120293879, 427733329, 131486759, 3389934071, 2929911599, 7979490791, 36504256799, 23616331489, 89206899239, 121560956039
Offset: 1

Views

Author

Keywords

Comments

Note that a(n) is always a prime q > prime(n).
For n > 1, a(n) = prime(k), where k is the smallest number such that A053760(k) = prime(n).
One could make a case for setting a(1) = 2, but a(1) = 3 seems more in keeping with the spirit of the sequence.
a(n) is the smallest odd prime q such that prime(n)^((q-1)/2) == -1 (mod q) and b^((q-1)/2) == 1 (mod q) for every natural base b < prime(n). - Thomas Ordowski, May 02 2019

Examples

			a(2) = 7 because the second prime is 3 and 3 is the least quadratic nonresidue modulo 7, 14, 17, 31, 34, ... and 7 is the least of these.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A020649, A025021, A053760, A307809. For records see A133435.
Differs from A002223, A045535 at 12th term.

Programs

  • Mathematica
    leastNonRes[p_] := For[q = 2, True, q = NextPrime[q], If[JacobiSymbol[q, p] != 1, Return[q]]]; a[1] = 3; a[n_] := For[pn = Prime[n]; k = 1, True, k++, an = Prime[k]; If[pn == leastNonRes[an], Print[n, " ", an];  Return[an]]]; Array[a, 20] (* Jean-François Alcover, Nov 28 2015 *)

Extensions

Definition corrected by Melvin J. Knight (MELVIN.KNIGHT(AT)ITT.COM), Dec 08 2006
Name edited by Thomas Ordowski, May 02 2019

A147971 Indices of the records in the sequence of smallest positive quadratic nonresidues (A053760).

Original entry on oeis.org

1, 4, 9, 20, 64, 92, 246, 752, 1289, 2084, 3383, 31284, 271259, 618525, 1389315, 2228197, 2914847, 6857528, 7457772, 141236709, 366883983, 1034128714, 3690981956, 4965932454, 7863515482, 19824941433, 195348751601, 292557888940, 2296552237422
Offset: 1

Views

Author

Max Alekseyev, Nov 18 2008

Keywords

Comments

The corresponding primes are listed in A147970.

Crossrefs

Formula

Positive integer n is in this sequence iff A053760(k) < A053760(n) for every k

Extensions

a(20)-a(29) from Charles R Greathouse IV, Apr 06 2012

A147969 Smallest prime p modulo which numbers 1,2,...,n are quadratic residues.

Original entry on oeis.org

2, 7, 23, 23, 71, 71, 311, 311, 311, 311, 479, 479, 1559, 1559, 1559, 1559, 5711, 5711, 10559, 10559, 10559, 10559, 18191, 18191, 18191, 18191, 18191, 18191, 31391, 31391, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791
Offset: 1

Author

Max Alekseyev, Nov 18 2008

Keywords

Comments

The same primes without repetitions are listed in A147970.

Programs

  • PARI
    a(n)=forprime(p=2,default(primelimit),forprime(i=2,n, if(kronecker(i,p)<1,next(2)));return(p)) \\ Charles R Greathouse IV, Apr 06 2012

A147970 Primes corresponding to the records in the sequence of smallest positive quadratic nonresidues (A053760).

Original entry on oeis.org

2, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 131486759, 2929911599, 7979490791, 23616331489, 89206899239, 121560956039, 196265095009, 513928659191, 5528920734431, 8402847753431, 70864718555231
Offset: 1

Author

Max Alekseyev, Nov 18 2008

Keywords

Formula

Prime p=A000040(n) is in this sequence iff A053760(k) < A053760(n) for every kA000040(A147971(n))

Extensions

a(20)-a(29) from Charles R Greathouse IV, Apr 06 2012

A147972 Smallest prime p modulo which the first n primes are nonzero quadratic residues.

Original entry on oeis.org

7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 366791, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 120293879, 131486759, 131486759, 2929911599, 2929911599, 7979490791, 23616331489, 23616331489, 89206899239, 121560956039, 196265095009, 196265095009, 513928659191, 5528920734431, 8402847753431, 8402847753431, 8402847753431, 70864718555231
Offset: 1

Author

Max Alekseyev, Nov 18 2008

Keywords

Comments

The same primes without repetitions are listed in A147970.
a(n) <= min{A002223(n), A002224(n)}. What is the smallest n for which this inequality is strict?
By definition, a(n) == 1, 7 (mod 8), so a(n) = min{A002223(n), A002224(n)}. - Jianing Song, Feb 18 2019

Crossrefs

Smallest prime p such that each of the first n primes has q q-th roots mod p: this sequence (q=2), A002225 (q=3), A002226 (q=5), A002227 (q=7), A002228 (q=11), A060363 (q=13), A060364 (q=17).

Programs

  • Mathematica
    (*version 7.0*)m=1;P=7;Lst={p};While[m<25,m++;S=Prime[Range[m]];While[MemberQ[JacobiSymbol[S,p],-1],p=NextPrime[p]];Lst=Append[Lst,P]];Lst (* Emmanuel Vantieghem, Jan 31 2012 *)
  • PARI
    t=2;forprime(p=2,1e9,forprime(q=2,t,if(kronecker(q,p)<1,next(2)));print1(p", ");t=nextprime(t+1);p--) \\ Charles R Greathouse IV, Jan 31 2012

Formula

a(n) >= min{A002189(n-1), A045535(n-1)}. - Jianing Song, Feb 18 2019

Extensions

a(23)-a(25) from Emmanuel Vantieghem, Jan 31 2012
a(26)-a(37) from Max Alekseyev, Aug 21 2015
Showing 1-5 of 5 results.