A133457 Irregular triangle read by rows: row n gives exponents in expression for n as a sum of powers of 2.
0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 3, 0, 1, 3, 2, 3, 0, 2, 3, 1, 2, 3, 0, 1, 2, 3, 4, 0, 4, 1, 4, 0, 1, 4, 2, 4, 0, 2, 4, 1, 2, 4, 0, 1, 2, 4, 3, 4, 0, 3, 4, 1, 3, 4, 0, 1, 3, 4, 2, 3, 4, 0, 2, 3, 4, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 5, 1, 5, 0, 1, 5, 2, 5, 0, 2, 5, 1, 2, 5, 0, 1, 2, 5, 3, 5, 0, 3, 5
Offset: 1
Examples
1 = 2^0. 2 = 2^1. 3 = 2^0 + 2^1. 4 = 2^2. 5 = 2^0 + 2^2. etc. and reading the exponents gives the rows of the triangle.
Links
- Reinhard Zumkeller, Rows n = 1..1024 of triangle, flattened
- Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. (See Section 3, Theorem 21 and Section 8, Theorem 50)
Crossrefs
Programs
-
Haskell
a133457 n k = a133457_tabf !! (n-1) !! n a133457_row n = a133457_tabf !! (n-1) a133457_tabf = map (fst . unzip . filter ((> 0) . snd) . zip [0..]) $ tail a030308_tabf -- Reinhard Zumkeller, Oct 28 2013, Feb 06 2013
-
Maple
A133457 := proc(n) local a,bdigs,i ; a := [] ; bdigs := convert(n,base,2) ; for i from 1 to nops(bdigs) do if op(i,bdigs) <> 0 then a := [op(a),i-1] ; fi ; od: a ; end: seq(op(A133457(n)),n=1..80) ; # R. J. Mathar, Nov 30 2007
-
Mathematica
Array[Join @@ Position[#, 1] - 1 &@ Reverse@ IntegerDigits[#, 2] &, 41] // Flatten (* Michael De Vlieger, Oct 08 2017 *)
Formula
a(n) = A048793(n) - 1.
Extensions
More terms from R. J. Mathar, Nov 30 2007
Comments