cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133474 Inverse binomial transform of (A113405 preceded by 0).

Original entry on oeis.org

0, 0, 0, 1, 6, 24, 81, 252, 756, 2241, 6642, 19764, 59049, 176904, 530712, 1592865, 4780782, 14346720, 43046721, 129146724, 387440172, 1162300833, 3486843450, 10460412252, 31381059609, 94143001680, 282429005040, 847287546561
Offset: 0

Views

Author

Paul Curtz, Nov 29 2007

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,0,1];; for n in [4..30] do a[n]:=6*a[n-1]-12*a[n-2]+9*a[n-3]; od; a; # G. C. Greubel, Nov 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0,0] cat Coefficients(R!( x^3/((1-3*x)*(1-3*x+3*x^2)) )); // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(coeff(series(x^3/((1-3*x)(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Nov 21 2019
  • Mathematica
    LinearRecurrence[{6,-12,9}, {0,0,0,1}, 30] (* G. C. Greubel, Nov 21 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0,0], Vec(x^3/((1-3*x)*(1-3*x+3*x^2)))) \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    def A133474_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^3/((1-3*x)*(1-3*x+3*x^2))).list()
    A133474_list(30) # G. C. Greubel, Nov 21 2019
    

Formula

b(n) = a(n) with one 0; c(n)=1, 3, 6, 9, 9, 0, -27, ... = A057083; b(n+1) = 3*b(n) + c(n)?
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^3/((1-3*x)*(1-3*x+3*x^2)).
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3). (End)