A133474 Inverse binomial transform of (A113405 preceded by 0).
0, 0, 0, 1, 6, 24, 81, 252, 756, 2241, 6642, 19764, 59049, 176904, 530712, 1592865, 4780782, 14346720, 43046721, 129146724, 387440172, 1162300833, 3486843450, 10460412252, 31381059609, 94143001680, 282429005040, 847287546561
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,9).
Programs
-
GAP
a:=[0,0,1];; for n in [4..30] do a[n]:=6*a[n-1]-12*a[n-2]+9*a[n-3]; od; a; # G. C. Greubel, Nov 21 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); [0,0,0] cat Coefficients(R!( x^3/((1-3*x)*(1-3*x+3*x^2)) )); // G. C. Greubel, Nov 21 2019 -
Maple
seq(coeff(series(x^3/((1-3*x)(1-3*x+3*x^2)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Nov 21 2019
-
Mathematica
LinearRecurrence[{6,-12,9}, {0,0,0,1}, 30] (* G. C. Greubel, Nov 21 2019 *)
-
PARI
my(x='x+O('x^30)); concat([0,0,0], Vec(x^3/((1-3*x)*(1-3*x+3*x^2)))) \\ G. C. Greubel, Nov 21 2019
-
Sage
def A133474_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x^3/((1-3*x)*(1-3*x+3*x^2))).list() A133474_list(30) # G. C. Greubel, Nov 21 2019
Formula
b(n) = a(n) with one 0; c(n)=1, 3, 6, 9, 9, 0, -27, ... = A057083; b(n+1) = 3*b(n) + c(n)?
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^3/((1-3*x)*(1-3*x+3*x^2)).
a(n) = 6*a(n-1) - 12*a(n-2) + 9*a(n-3). (End)