A133477 Sum of cubefree divisors of n excluding 1.
0, 2, 3, 6, 5, 11, 7, 6, 12, 17, 11, 27, 13, 23, 23, 6, 17, 38, 19, 41, 31, 35, 23, 27, 30, 41, 12, 55, 29, 71, 31, 6, 47, 53, 47, 90, 37, 59, 55, 41, 41, 95, 43, 83, 77, 71, 47, 27, 56, 92, 71, 97, 53, 38, 71, 55, 79, 89, 59, 167, 61, 95, 103, 6, 83, 143, 67, 125, 95, 143, 71, 90
Offset: 1
Examples
a(8) = 6 because the divisors of 8 are {1,2,4,8}, the cubefree divisors are 1, 2, 4 so we get a(8) = 2 + 4 = 6.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
scfd[n_]:=Total[Select[Divisors[n],Max[Transpose[FactorInteger[#]][[2]]]<3&]]; Array[scfd,80]-1 (* Harvey P. Dale, Nov 30 2014 *) f[p_, e_] := 1 + p + If[e > 1, p^2, 0]; a[1] = 0; a[n_] := -1 + Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
Formula
a(n) = A073185(n) - 1. - N. J. A. Sloane, Nov 30 2007
Extensions
Edited by N. J. A. Sloane, Nov 30 2007