A133501 Number of steps for "powertrain" operation to converge when started at n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5, 2, 3, 3, 1, 1, 1, 3, 2, 5, 5, 5, 4, 9, 1, 1, 2, 5, 3, 3, 4, 6, 3, 5, 1, 1, 3, 2, 3, 5, 3, 3, 2, 4, 1, 1, 6, 3, 4, 4, 3, 3, 8, 2, 1, 1, 6, 6, 2, 2, 3, 5, 3, 2, 1, 1, 5, 3, 4, 4, 5, 4, 3, 7, 1, 1, 2, 5, 4, 2, 3, 3, 2, 4, 1, 1, 1, 1, 1
Offset: 0
Examples
39 -> 19683 -> 1594323 -> 38443359375 -> 59440669655040 -> 0, so a(39) = 5.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Full trajectories of numbers from 1 to 10000
Crossrefs
Programs
-
Maple
powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end; # Compute trajectory of n under repeated application of the powertrain map of A133500. This will return -1 if the trajectory does not converge to a single number in 100 steps (so it could fail if the trajectory enters a nontrivial loop or takes longer than 100 steps to converge). PTtrajectory := proc(n) local p,M,t1,t2,i; M:=100; p:=[n]; t1:=n; for i from 1 to M do t2:=powertrain(t1); if t2 = t1 then RETURN(n,i-1,p); fi; t1:=t2; p:=[op(p),t2]; od; RETURN(n,-1,p); end;
Comments