cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133501 Number of steps for "powertrain" operation to converge when started at n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5, 2, 3, 3, 1, 1, 1, 3, 2, 5, 5, 5, 4, 9, 1, 1, 2, 5, 3, 3, 4, 6, 3, 5, 1, 1, 3, 2, 3, 5, 3, 3, 2, 4, 1, 1, 6, 3, 4, 4, 3, 3, 8, 2, 1, 1, 6, 6, 2, 2, 3, 5, 3, 2, 1, 1, 5, 3, 4, 4, 5, 4, 3, 7, 1, 1, 2, 5, 4, 2, 3, 3, 2, 4, 1, 1, 1, 1, 1
Offset: 0

Views

Author

J. H. Conway and N. J. A. Sloane, Dec 03 2007

Keywords

Comments

See A133500 for definition.
It is conjectured that every number converges to a fixed-point.

Examples

			39 -> 19683 -> 1594323 -> 38443359375 -> 59440669655040 -> 0, so a(39) = 5.
		

Crossrefs

For the powertrain map itself, see A133500.
See A133508, A133503 for records. See A135381 for high-water marks.

Programs

  • Maple
    powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end;
    # Compute trajectory of n under repeated application of the powertrain map of A133500. This will return -1 if the trajectory does not converge to a single number in 100 steps (so it could fail if the trajectory enters a nontrivial loop or takes longer than 100 steps to converge).
    PTtrajectory := proc(n) local p,M,t1,t2,i; M:=100; p:=[n]; t1:=n; for i from 1 to M do t2:=powertrain(t1); if t2 = t1 then RETURN(n,i-1,p); fi; t1:=t2; p:=[op(p),t2]; od; RETURN(n,-1,p); end;