cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133550 Sum of fifth powers of n odd primes.

Original entry on oeis.org

243, 3368, 20175, 181226, 552519, 1972376, 4448475, 10884818, 31395967, 60025118, 129369075, 245225276, 392233719, 621578726, 1039774219, 1754698518, 2599294819, 3949419926, 5753649277, 7826720870, 10903777269, 14842817912
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Examples

			a(2)=3368 because 3^5+5^5 = 3368.
		

Crossrefs

Programs

  • Mathematica
    c = 5; a = {}; b = 0; Do[b = b + Prime[n]^c; AppendTo[a, b], {n, 2, 1000}]; a

Formula

a(n) = A122103(n+1)-32.

A133549 Sum of the fourth powers of the first n odd primes.

Original entry on oeis.org

81, 706, 3107, 17748, 46309, 129830, 260151, 539992, 1247273, 2170794, 4044955, 6870716, 10289517, 15169198, 23059679, 35177040, 49022881, 69174002, 94585683, 122983924, 161934005, 209392326, 272134567, 360663848, 464724249, 577275130
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Examples

			a(2)=706 because 3^4 + 5^4 = 706.
		

Crossrefs

Programs

  • Maple
    a:=proc (n) options operator, arrow: add(ithprime(j)^4, j=2..n+1) end proc: seq(a(n),n=1..26); # Emeric Deutsch, Oct 02 2007
  • Mathematica
    c = 4; a = {}; b = 0; Do[b = b + Prime[n]^c; AppendTo[a, b], {n, 2, 1000}]; a

Formula

a(n) = A122102(n+1) - 16. - Michel Marcus, Nov 05 2013

Extensions

Comment corrected by Michel Marcus, Nov 05 2013
Showing 1-2 of 2 results.