A133565 a(1)=1. a(n+1) = sum{k=non-isolated divisors of n} a(k). A non-isolated divisor, k, of n is a positive divisor of n where (k-1) or (k+1) divides n.
1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1
Offset: 1
Keywords
Examples
The positive divisors of 20 are 1,2,4,5,10,20. Of these, 1 and 2 are adjacent and 4 and 5 are adjacent. So the non-isolated divisors of 20 are 1,2, 4,5. Therefore a(21) = a(1) + a(2) + a(4) + a(5) = 1 + 0 + 0 + 1 = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
PARI
A133565(n) = if(1==n,n,sumdiv(n-1,d,if((!((n-1)%(1+d))) || ((d>1)&&(!((n-1)%(d-1)))), A133565(d), 0))); \\ Antti Karttunen, Dec 19 2018
Extensions
Extended by Ray Chandler, Jun 25 2008
Comments