A133576 Numbers which are sums of consecutive composites.
4, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1
Examples
Every composite is in this sequence as one consecutive composite. We account for primes thus: a(10) = 17 = 8 + 9. a(12) = 19 = 9 + 10. a(16) = 23 = 6 + 8 + 9. a(22) = 29 = 14 + 15. a(24) = 31 = 9 + 10 + 12. a(30) = 37 = 4 + 6 + 8 + 9 + 10. a(34) = 41 = 20 + 21 = 12 + 14 + 15. a(36) = 43 = 21 + 22. Not included = 47. a(45) = 53 = 26 + 27 = 8 + 9 + 10 + 12 + 14. a(51) = 59 = 18 + 20 + 21 = 6 + 8 + 9 + 10 + 12 + 14. Not included = 61. a(58) = 67 = 33 + 34 = 21 + 22 + 24 = 10 + 12 + 14 + 15 + 16. a(62) = 71 = 35 + 36 = 22 + 24 + 25 = 4 + 6 + 8 + 9 + 10 + 12 + 14. Not included = 73. a(69) = 79 = 39 + 40. a(73) = 83 = 14 + 15 + 16 + 18 + 20. a(79) = 89 = 44 + 45. a(87) = 97 = 48 + 49 = 22 + 24 + 25 + 26. a(91) = 101 = 50 + 51. a(93) = 103 = 51 + 52.
Programs
-
Maple
isA133576 := proc(n) local i,j ; for i from 1 do if A002808(i) > n then return false; end if; for j from i do s := add( A002808(l),l=i..j) ; if s > n then break; elif s = n then return true; end if; end do: end do: end proc: A133576 := proc(n) local a; if n = 1 then return A002808(1) ; else for a from procname(n-1)+1 do if isA133576(a) then return a; end if; end do: end if ; end proc: seq(A133576(n),n=1..71) ; # R. J. Mathar, Feb 14 2015
-
Mathematica
okQ[n_] := If[CompositeQ[n], True, MemberQ[IntegerPartitions[n, All, Select[Range[n], CompositeQ]], p_List /; Length[p] == Length[Union[p]] && AllTrue[Complement[Range[p[[-1]], p[[1]]], p], PrimeQ]]]; Select[Range[150], okQ] (* Jean-François Alcover, Oct 27 2023 *)
Comments