A133581 (k^2)-th k-smooth number for k = prime(n).
8, 16, 54, 112, 396, 512, 1008, 1155, 1794, 3312, 3520, 5488, 6776, 7020, 8405, 11180, 14384, 14720, 18241, 20339, 20709, 24769, 27094, 31648, 38994, 41890, 42336, 45318, 45825, 48852, 66234, 69874, 76857, 77441, 91719, 92323, 100215, 108376, 112896, 121539
Offset: 1
Examples
a(1) = 8 = A000079(4). a(2) = 16 = A003586(9). a(3) = 54 = A051037(25).
Links
- Eric Weisstein's World of Mathematics, Smooth Number
Programs
-
Python
from sympy import integer_log, prime, prevprime def A133581(n): if n==1: return 8 def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) k = prime(n) def f(x): return k**2+x-g(x,k) return bisection(f,k**2,k**2) # Chai Wah Wu, Sep 17 2024
Extensions
Corrected and extended by D. S. McNeil, Dec 08 2010
a(33)-a(40) from Chai Wah Wu, Sep 17 2024
Comments