cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133581 (k^2)-th k-smooth number for k = prime(n).

Original entry on oeis.org

8, 16, 54, 112, 396, 512, 1008, 1155, 1794, 3312, 3520, 5488, 6776, 7020, 8405, 11180, 14384, 14720, 18241, 20339, 20709, 24769, 27094, 31648, 38994, 41890, 42336, 45318, 45825, 48852, 66234, 69874, 76857, 77441, 91719, 92323, 100215, 108376, 112896, 121539
Offset: 1

Views

Author

Jonathan Vos Post, Dec 26 2007

Keywords

Comments

An integer is k-smooth if it has no prime factors > k.

Examples

			a(1) = 8 = A000079(4).
a(2) = 16 = A003586(9).
a(3) = 54 = A051037(25).
		

Crossrefs

Programs

  • Python
    from sympy import integer_log, prime, prevprime
    def A133581(n):
        if n==1: return 8
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        k = prime(n)
        def f(x): return k**2+x-g(x,k)
        return bisection(f,k**2,k**2) # Chai Wah Wu, Sep 17 2024

Formula

a(n) = A001248(n)-th integer which has no prime factors > A000040(n).

Extensions

Corrected and extended by D. S. McNeil, Dec 08 2010
a(33)-a(40) from Chai Wah Wu, Sep 17 2024