cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133611 A triangular array of numbers related to factorization and number of parts in Murasaki diagrams.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 14, 7, 1, 52, 52, 51, 36, 11, 1, 203, 203, 202, 171, 81, 16, 1, 877, 877, 876, 813, 512, 162, 22, 1, 4140, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115975, 115974, 115463, 106133, 72028, 29503, 6676, 796, 46, 1
Offset: 1

Views

Author

Alford Arnold, Sep 18 2007

Keywords

Comments

When the Bell multisets are encoded as described in A130274, the seven case in the example can be coded as 19578, 15942, 30873, 26427, 35642, 29491 and 32938.

Examples

			The array begins:
   1
   1  1
   2  2  1
   5  5  4  1
  15 15 14  7  1
  52 52 51 36 11 1
  ...
a(14) = 7 because only seven of the 52 Bell multisets can be generated by attaching a new stroke to the third element in the set of diaqrams with four strokes.
		

Crossrefs

Cf. A000110 (row sums), A137650 (a similar triangle), A130274, A211561.
Cf. A048993.

Programs

  • Maple
    T:= proc(i,j) add(combinat:-stirling2(i,k),k=j..i) end proc:
    seq(seq(T(i,j),j=0..i),i=0..15); # Robert Israel, Nov 01 2018
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n>0, add(b(n-j, t+1)*
          binomial(n-1, j-1), j=1..n), add(x^j, j=0..t))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 30 2019
  • Mathematica
    row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse;
    Array[row, 11, 0] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

Equals A048993 * A000012. - Gary W. Adamson, Jan 29 2008
That is, T(i,j) = Sum_{k=j..i} A048993(i,k) for 0 <= j <= i. - Robert Israel, Nov 01 2018

Extensions

Definition not clear to me - N. J. A. Sloane, Sep 18 2007
More terms from Robert Israel, Nov 01 2018