A133611 A triangular array of numbers related to factorization and number of parts in Murasaki diagrams.
1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 14, 7, 1, 52, 52, 51, 36, 11, 1, 203, 203, 202, 171, 81, 16, 1, 877, 877, 876, 813, 512, 162, 22, 1, 4140, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115975, 115974, 115463, 106133, 72028, 29503, 6676, 796, 46, 1
Offset: 1
Examples
The array begins: 1 1 1 2 2 1 5 5 4 1 15 15 14 7 1 52 52 51 36 11 1 ... a(14) = 7 because only seven of the 52 Bell multisets can be generated by attaching a new stroke to the third element in the set of diaqrams with four strokes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10011
Programs
-
Maple
T:= proc(i,j) add(combinat:-stirling2(i,k),k=j..i) end proc: seq(seq(T(i,j),j=0..i),i=0..15); # Robert Israel, Nov 01 2018 # second Maple program: b:= proc(n, t) option remember; `if`(n>0, add(b(n-j, t+1)* binomial(n-1, j-1), j=1..n), add(x^j, j=0..t)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): seq(T(n), n=0..10); # Alois P. Heinz, Aug 30 2019
-
Mathematica
row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse; Array[row, 11, 0] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
Formula
That is, T(i,j) = Sum_{k=j..i} A048993(i,k) for 0 <= j <= i. - Robert Israel, Nov 01 2018
Extensions
Definition not clear to me - N. J. A. Sloane, Sep 18 2007
More terms from Robert Israel, Nov 01 2018
Comments