A211561 T(n,k) = number of nonnegative integer arrays of length n+k-1 with new values 0 upwards introduced in order, and containing the value k-1.
1, 1, 2, 1, 4, 5, 1, 7, 14, 15, 1, 11, 36, 51, 52, 1, 16, 81, 171, 202, 203, 1, 22, 162, 512, 813, 876, 877, 1, 29, 295, 1345, 3046, 4012, 4139, 4140, 1, 37, 499, 3145, 10096, 17866, 20891, 21146, 21147, 1, 46, 796, 6676, 29503, 72028, 106133, 115463, 115974, 115975
Offset: 1
Examples
Some solutions for n=5, k=4: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....1....0....1....1....1....1....0....1....1....1....1....1....1....0 ..1....2....2....0....0....2....2....0....1....2....2....2....2....0....2....1 ..2....0....2....0....2....0....3....2....2....2....3....3....2....2....0....2 ..3....1....3....1....3....2....1....3....3....2....1....3....3....2....1....2 ..4....0....3....0....3....3....4....1....3....3....0....2....4....3....2....2 ..5....3....3....2....4....4....2....1....2....2....1....0....4....3....3....2 ..2....0....1....3....5....4....4....4....4....2....0....4....3....1....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical: T(n,k) = Sum_{j=k..n+k-1} stirling2(n+k-1,j)
Comments