cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A320955 Square array read by ascending antidiagonals: A(n, k) (n >= 0, k >= 0) = Sum_{j=0..n-1} (!j/j!)*((n - j)^k/(n - j)!) if k > 0 and 1 if k = 0. Here !n denotes the subfactorial of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 14, 16, 1, 0, 1, 1, 2, 5, 15, 41, 32, 1, 0, 1, 1, 2, 5, 15, 51, 122, 64, 1, 0, 1, 1, 2, 5, 15, 52, 187, 365, 128, 1, 0, 1, 1, 2, 5, 15, 52, 202, 715, 1094, 256, 1, 0
Offset: 0

Views

Author

Peter Luschny, Nov 05 2018

Keywords

Comments

Arndt and Sloane (see the link and A278984) identify the sequence to give "the number of words of length n over an alphabet of size b that are in standard order" and provide the formula Sum_{j = 1..b} Stirling_2(n, j) assuming b >= 1 and j >= 1. Compared to the array as defined here this misses the first row and the first column of our array.
The method used here is the special case of a general method described in A320956 applied to the function exp. For applications to other functions see the cross references.
A(k,n) is the number of color patterns (set partitions) for an oriented row of length n using up to k colors (subsets). Two color patterns are equivalent if the colors are permuted. For A(3,4) = 14, the six achiral patterns are AAAA, AABB, ABAB, ABBA, ABBC, and ABCA; the eight chiral patterns are the four chiral pairs AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB. - Robert A. Russell, Nov 10 2018

Examples

			Array starts:
n\k   0  1  2  3   4   5    6    7     8      9  ...
----------------------------------------------------
[0]   1, 0, 0, 0,  0,  0,   0,   0,    0,     0, ...  A000007
[1]   1, 1, 1, 1,  1,  1,   1,   1,    1,     1, ...  A000012
[2]   1, 1, 2, 4,  8, 16,  32,  64,  128,   256, ...  A011782
[3]   1, 1, 2, 5, 14, 41, 122, 365, 1094,  3281, ...  A124302
[4]   1, 1, 2, 5, 15, 51, 187, 715, 2795, 11051, ...  A124303
[5]   1, 1, 2, 5, 15, 52, 202, 855, 3845, 18002, ...  A056272
[6]   1, 1, 2, 5, 15, 52, 203, 876, 4111, 20648, ...  A056273, ?A284727
[7]   1, 1, 2, 5, 15, 52, 203, 877, 4139, 21110, ...
[8]   1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, ...
[9]   1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...
----------------------------------------------------
Seen as a triangle given by the descending antidiagonals:
[0]             1
[1]            0, 1
[2]          0, 1, 1
[3]        0, 1, 1, 1
[4]       0, 1, 2, 1, 1
[5]     0, 1, 4, 2, 1, 1
[6]    0, 1, 8, 5, 2, 1, 1
[7]  0, 1, 16, 14, 5, 2, 1, 1
		

Crossrefs

Antidiagonal sums (and row sums of the triangle): A320964.
Cf. this sequence (exp), A320962 (log(x+1)), A320956 (sec+tan), A320958 (arcsin), A320959 (arctanh).
Cf. A320750 (unoriented), A320751 (chiral), A305749 (achiral).

Programs

  • Maple
    A := (n, k) -> if k = 0 then 1 else add(A008290(n, n-j)*(n-j)^k, j=0..n-1)/n! fi:
    seq(lprint(seq(A(n, k), k=0..9)), n=0..9); # Prints the array row-wise.
    seq(seq(A(n-k, k), k=0..n), n=0..11); # Gives the array as listed.
  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[(Subfactorial[j]/Factorial[j])((n - j)^k/(n - j)!), {j, 0, n - 1}]; Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten
    Table[Sum[StirlingS2[k, j], {j, 0, n-k}], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert A. Russell, Nov 10 2018 *)

Formula

A(n, k) = (1/n!)*Sum_{j=0..n-1} A008290(n, n-j)*(n-j)^k if k > 0.
If one drops the special case A(n, 0) = 1 from the definition then column 0 becomes Sum_{k=0..n} (-1)^k/k! = A103816(n)/A053556(n).
Row n is given for k >= 1 by a_n(k), where
a_0(k) = 0^k/0!.
a_1(k) = 1^k/1!.
a_2(k) = (2^k)/2!.
a_3(k) = (3^k + 3)/3!.
a_4(k) = (6*2^k + 4^k + 8)/4!.
a_5(k) = (20*2^k + 10*3^k + 5^k + 45)/5!.
a_6(k) = (135*2^k + 40*3^k + 15*4^k + 6^k + 264)/6!.
a_7(k) = (924*2^k + 315*3^k + 70*4^k + 21*5^k + 7^k + 1855)/7!.
a_8(k) = (7420*2^k + 2464*3^k + 630*4^k + 112*5^k + 28*6^k + 8^k + 14832)/8!.
Note that the coefficients of the generating functions a_n are the recontres numbers A000240, A000387, A000449, ...
Rewriting the formulas with exponential generating functions for the rows we have egf(n) = Sum_{k=0..n} !k*binomial(n,k)*exp(x*(n-k)) and A(n, k) = (k!/n!)*[x^k] egf(n). In this formulation no special rule for the case k = 0 is needed.
The rows converge to the Bell numbers. Convergence here means that for every fixed k the terms in column k differ from A000110(k) only for finitely many indices.
A(n, n) are the Bell numbers A000110(n) for n >= 0.
Let S(n, k) = Bell(n+k+1) - A(n, k+n+1) for n >= 0 and k >= 0, then the square array S(n, k) read by descending antidiagonals equals provable the triangle A137650 and equals empirical the transpose of the array A211561.

A133611 A triangular array of numbers related to factorization and number of parts in Murasaki diagrams.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 14, 7, 1, 52, 52, 51, 36, 11, 1, 203, 203, 202, 171, 81, 16, 1, 877, 877, 876, 813, 512, 162, 22, 1, 4140, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115975, 115974, 115463, 106133, 72028, 29503, 6676, 796, 46, 1
Offset: 1

Views

Author

Alford Arnold, Sep 18 2007

Keywords

Comments

When the Bell multisets are encoded as described in A130274, the seven case in the example can be coded as 19578, 15942, 30873, 26427, 35642, 29491 and 32938.

Examples

			The array begins:
   1
   1  1
   2  2  1
   5  5  4  1
  15 15 14  7  1
  52 52 51 36 11 1
  ...
a(14) = 7 because only seven of the 52 Bell multisets can be generated by attaching a new stroke to the third element in the set of diaqrams with four strokes.
		

Crossrefs

Cf. A000110 (row sums), A137650 (a similar triangle), A130274, A211561.
Cf. A048993.

Programs

  • Maple
    T:= proc(i,j) add(combinat:-stirling2(i,k),k=j..i) end proc:
    seq(seq(T(i,j),j=0..i),i=0..15); # Robert Israel, Nov 01 2018
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n>0, add(b(n-j, t+1)*
          binomial(n-1, j-1), j=1..n), add(x^j, j=0..t))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Aug 30 2019
  • Mathematica
    row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse;
    Array[row, 11, 0] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

Equals A048993 * A000012. - Gary W. Adamson, Jan 29 2008
That is, T(i,j) = Sum_{k=j..i} A048993(i,k) for 0 <= j <= i. - Robert Israel, Nov 01 2018

Extensions

Definition not clear to me - N. J. A. Sloane, Sep 18 2007
More terms from Robert Israel, Nov 01 2018

A211557 Number of nonnegative integer arrays of length n+3 with new values 0 upwards introduced in order, and containing the value 3.

Original entry on oeis.org

1, 11, 81, 512, 3046, 17866, 106133, 649045, 4125023, 27378716, 190102160, 1380567060, 10472967693, 82843346443, 682012236077, 5832548494812, 51723577104638, 474868072764550, 4506710508270721, 44151990164554541
Offset: 1

Views

Author

R. H. Hardin Apr 15 2012

Keywords

Comments

Column 4 of A211561

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....1....1....0....1....1....1....0....1....1....1....1....1....1
..0....0....0....2....2....1....2....2....1....1....2....2....1....2....2....0
..2....2....1....3....3....2....0....0....2....2....0....0....2....3....0....2
..0....1....2....0....1....0....3....2....2....2....3....0....3....2....3....3
..2....0....1....1....3....1....1....3....3....3....4....1....1....2....2....2
..3....2....3....4....4....0....0....2....0....0....2....0....2....1....3....0
..0....3....0....4....2....3....1....3....4....1....3....3....0....0....2....3
		

Formula

Empirical: a(n) = sum{j in 4..n+3}stirling2(n+3,j)

A211558 Number of nonnegative integer arrays of length n+4 with new values 0 upwards introduced in order, and containing the value 4.

Original entry on oeis.org

1, 16, 162, 1345, 10096, 72028, 503295, 3513522, 24846186, 179710415, 1338211110, 10301168792, 82149009153, 679213429092, 5821288827862, 51678344988737, 474686563694500, 4505982729646896, 44149073821979791, 445947141166581374, 4638543419725492302, 49631058873617505287
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2012

Keywords

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....0....1....1....1....1....1....1....1....1....1....1....0....1
..2....1....1....1....0....2....2....1....2....1....2....1....2....2....1....1
..0....2....2....2....2....3....3....2....3....2....3....2....0....3....2....1
..3....0....3....1....2....0....0....3....1....0....2....2....3....2....1....2
..0....3....3....3....3....4....4....4....4....2....4....1....3....3....3....3
..1....4....3....4....4....2....1....1....0....3....1....3....0....0....0....2
..0....1....0....1....4....4....3....1....2....4....5....0....4....4....4....0
..4....0....4....1....5....4....5....2....0....5....4....4....5....5....0....4
		

Crossrefs

Column 5 of A211561.

Formula

Empirical: a(n) = Sum_{j=5..n+4} Stirling2(n+4,j).

A211559 Number of nonnegative integer arrays of length n+5 with new values 0 upwards introduced in order, and containing the value 5.

Original entry on oeis.org

1, 22, 295, 3145, 29503, 256565, 2134122, 17337685, 139635380, 1127444190, 9204978242, 76496257502, 650255333547, 5673699543152, 50929138898237, 470895301126099, 4486844907734841, 44052656933795691, 445462140383086124
Offset: 1

Views

Author

R. H. Hardin Apr 15 2012

Keywords

Comments

Column 6 of A211561

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....0....0....1....1....1....1....1....0
..2....2....2....2....0....2....2....2....1....0....2....0....0....2....2....1
..3....3....1....1....2....3....3....1....2....1....3....0....2....3....2....2
..4....4....3....3....1....3....4....3....3....2....4....2....3....4....0....3
..3....3....4....4....2....4....0....1....4....3....0....3....0....5....2....0
..2....2....5....5....3....5....5....4....5....4....0....2....3....0....3....4
..3....5....4....4....4....1....2....2....2....1....5....4....4....4....4....5
..5....5....2....3....2....6....5....2....6....3....3....5....5....6....5....4
..4....5....4....4....5....6....1....5....2....5....3....2....2....4....0....2
		

Formula

Empirical: a(n) = sum{j in 6..n+5}stirling2(n+5,j)

A211560 Number of nonnegative integer arrays of length n+6 with new values 0 upwards introduced in order, and containing the value 6.

Original entry on oeis.org

1, 29, 499, 6676, 77078, 810470, 8016373, 76199007, 706750917, 6470051684, 58990507604, 539568082508, 4980617941373, 46623060002853, 444309621663295, 4323539568389616, 43053687075812286, 439371904347001594
Offset: 1

Views

Author

R. H. Hardin Apr 15 2012

Keywords

Comments

Column 7 of A211561

Examples

			Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....2....2....1....2....2....2
..3....3....3....3....3....0....3....3....0....0....3....3....2....3....3....0
..4....4....1....4....4....3....4....4....3....0....4....4....2....2....4....3
..5....0....4....5....3....4....3....3....3....3....5....5....3....0....0....1
..0....2....2....1....5....5....1....5....4....2....0....4....4....3....4....4
..4....4....5....6....1....6....4....6....1....4....0....6....1....4....3....3
..2....5....6....6....6....1....5....6....1....3....6....2....5....5....5....5
..6....0....1....6....3....5....3....3....5....5....6....1....1....6....3....6
..3....6....6....6....7....6....6....1....6....6....7....6....6....3....6....5
		

Formula

Empirical: a(n) = sum{j in 7..n+6}stirling2(n+6,j)

A211562 Number of nonnegative integer arrays of length n+2 with new values 0 upwards introduced in order, and containing the value n-1.

Original entry on oeis.org

5, 14, 36, 81, 162, 295, 499, 796, 1211, 1772, 2510, 3459, 4656, 6141, 7957, 10150, 12769, 15866, 19496, 23717, 28590, 34179, 40551, 47776, 55927, 65080, 75314, 86711, 99356, 113337, 128745, 145674, 164221, 184486, 206572, 230585, 256634, 284831
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2012

Keywords

Comments

Row 3 of A211561.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....0....0....2....2....2....1....2....2....2....2
..3....1....2....3....3....0....2....2....2....0....3....2....3....3....3....3
..0....1....1....3....2....3....2....0....3....1....4....3....4....4....1....4
..4....3....3....1....0....2....3....3....4....3....3....2....5....3....2....0
..4....4....4....4....4....4....4....4....1....4....1....4....4....5....4....1
		

Crossrefs

Cf. A211561.

Formula

Empirical: a(n) = (1/8)*n^4 + (5/12)*n^3 + (7/8)*n^2 + (19/12)*n + 2.
Empirical: a(n) = sum{j in n..n+2}stirling2(n+2,j).
Conjectures from Colin Barker, Jul 19 2018: (Start)
G.f.: x*(5 - 11*x + 16*x^2 - 9*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A211563 Number of nonnegative integer arrays of length n+3 with new values 0 upwards introduced in order, and containing the value n-1.

Original entry on oeis.org

15, 51, 171, 512, 1345, 3145, 6676, 13091, 24047, 41835, 69525, 111126, 171761, 257857, 377350, 539905, 757151, 1042931, 1413567, 1888140, 2488785, 3241001, 4173976, 5320927, 6719455, 8411915, 10445801, 12874146, 15755937, 19156545
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2012

Keywords

Comments

Row 4 of A211561.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....0....1....1....1....1....1....1....1....1....1....1....1
..2....2....2....2....1....0....2....2....2....2....2....2....2....2....2....2
..1....3....3....3....2....2....3....3....2....0....3....0....3....1....2....1
..3....4....2....0....3....3....4....0....1....3....4....0....0....1....3....3
..3....5....4....3....4....4....5....4....3....4....4....3....2....0....4....4
..4....6....4....3....1....2....6....2....2....4....5....4....4....3....0....4
..1....1....1....4....5....1....7....0....4....0....5....4....1....4....3....1
		

Crossrefs

Cf. A211561.

Formula

Empirical: a(n) = (1/48)*n^6 + (7/48)*n^5 + (23/48)*n^4 + (61/48)*n^3 + 3*n^2 + (61/12)*n + 5.
Empirical: a(n) = sum{j in n..n+3}stirling2(n+3,j).
Conjectures from Colin Barker, Jul 19 2018: (Start)
G.f.: x*(15 - 54*x + 129*x^2 - 139*x^3 + 92*x^4 - 33*x^5 + 5*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A211564 Number of nonnegative integer arrays of length n+4 with new values 0 upwards introduced in order, and containing the value n-1.

Original entry on oeis.org

52, 202, 813, 3046, 10096, 29503, 77078, 183074, 401337, 822277, 1590604, 2928879, 5168035, 8786128, 14456683, 23108105, 35995730, 54788196, 81669919, 119461564, 171760506, 243103381, 339152932, 466911460, 634963295, 853748807, 1135872582
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2012

Keywords

Comments

Row 5 of A211561.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....0....1....1....1....1....1....0....1....1....1....1
..2....1....2....2....2....1....2....2....2....2....2....1....0....2....0....2
..3....0....3....1....0....2....3....3....2....0....2....0....1....3....2....3
..4....2....2....0....3....0....4....4....3....1....1....2....2....3....2....0
..5....3....2....3....4....3....2....4....3....3....3....3....2....2....2....4
..5....2....1....3....1....4....5....1....4....3....1....3....3....4....3....1
..4....0....4....4....0....3....0....1....5....4....4....2....0....5....0....0
..1....4....5....4....2....4....0....1....3....0....0....4....4....6....4....1
		

Crossrefs

Cf. A211561.

Formula

Empirical: a(n) = (1/384)*n^8 + (1/32)*n^7 + (95/576)*n^6 + (71/120)*n^5 + (2155/1152)*n^4 + (167/32)*n^3 + (3301/288)*n^2 + (2119/120)*n + 15.
Empirical: a(n) = sum{j in n..n+4}stirling2(n+4,j).
Conjectures from Colin Barker, Jul 19 2018: (Start)
G.f.: x*(52 - 266*x + 867*x^2 - 1367*x^3 + 1534*x^4 - 1097*x^5 + 497*x^6 - 130*x^7 + 15*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A211565 Number of nonnegative integer arrays of length n+5 with new values 0 upwards introduced in order, and containing the value n-1.

Original entry on oeis.org

203, 876, 4012, 17866, 72028, 256565, 810470, 2300949, 5957407, 14253254, 31865787, 67190359, 134640766, 258034213, 475437305, 845940194, 1458930243, 2446555288, 4000200734, 6391955256, 10002207736, 15354704197, 23160598840
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2012

Keywords

Comments

Row 6 of A211561.

Examples

			Some solutions for n=5:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....0....1....1....1....1....1
..2....2....2....2....2....2....2....2....2....2....1....2....2....2....2....0
..2....1....2....3....2....3....1....0....3....3....2....0....1....3....3....1
..1....3....3....2....1....3....1....3....4....4....3....1....1....4....4....2
..3....4....4....4....3....4....3....4....1....5....0....3....3....1....2....3
..4....3....4....4....1....1....3....0....5....6....4....2....3....5....5....1
..1....1....3....4....2....5....2....3....1....7....5....4....1....0....3....3
..4....3....5....5....1....4....3....2....3....8....0....4....2....3....1....0
..3....2....5....5....4....5....4....5....2....2....6....2....4....4....0....4
		

Crossrefs

Cf. A211561.

Formula

Empirical: a(n) = (1/3840)*n^10 + (11/2304)*n^9 + (11/288)*n^8 + (1099/5760)*n^7 + (2909/3840)*n^6 + (31511/11520)*n^5 + (3365/384)*n^4 + (66703/2880)*n^3 + (13663/288)*n^2 + (8149/120)*n + 52.
Empirical: a(n) = sum{j in n..n+5} stirling2(n+5,j).
Showing 1-10 of 11 results. Next