cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133656 Number of below-diagonal paths from (0,0) to (n,n) using steps (1,0), (0,1) and (2k-1,1), k a positive integer.

Original entry on oeis.org

1, 2, 6, 23, 99, 456, 2199, 10962, 56033, 292094, 1546885, 8299058, 45010492, 246377362, 1359339710, 7551689783, 42206697209, 237156951618, 1338917298708, 7591380528489, 43207023511013, 246773061257046, 1413889039642479, 8124356140582768, 46807462792903984
Offset: 0

Views

Author

Brian Drake, Sep 20 2007

Keywords

Examples

			a(4) = 99 since there are 90 Schroeder paths (A006318) from (0,0) to (4,4) plus DNNEN, DNENN, DENNN, DdNN, DNdN, DNNd, EDNNN, ENDNN and dDNN, where E=(1,0), N=(0,1), D=(3,1) and d=(1,1).
		

Crossrefs

Programs

  • Maple
    A:=series(RootOf(1+_Z*(x-1)+_Z^2*(x-x^2)+_Z^3*x^2-_Z^4*x^3), x, 21): seq(coeff(A,x,i), i=0..20);
  • Mathematica
    a[n_] := Sum[Binomial[n+k, n] * Sum[Binomial[j, -n - 3k + 2j - 2]* (-1)^(n+k-j+1) * Binomial[n+k+1, j], {j, 0, k+n+1}], {k, 0, n}]/(n+1);
    a /@ Range[0, 24] (* Jean-François Alcover, Oct 06 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(binomial(n+k,n)*sum(binomial(j,-n-3*k+2*j-2)*(-1)^(n+k-j+1) *binomial(n+k+1,j),j,0,k+n+1),k,0,n)/(n+1); /* Vladimir Kruchinin, Oct 11 2011 */

Formula

G.f. g(x) satisfies: g(x) = 1 + x*g(x)^2+x*g(x)/(1-x^2*g(x)^2).
a(n) = sum(k=0..n, binomial(n+k,n)*sum(j=0..k+n+1, binomial(j,-n-3*k+2*j-2) *(-1)^(n+k-j+1)*binomial(n+k+1,j)))/(n+1). - Vladimir Kruchinin, Oct 11 2011
From Peter Bala, Feb 22 2022: (Start)
G.f. g(x) = (1/x)*series reversion of x*(1 + x)*(1 - x)^2/(1 + x - x^2).
It appears that 1 + x*g'(x)/g(x) = 1 + 2*x + 8*x^2 + 41*x^3 + 220*x^4 + ... is the g.f. of A348474. (End)