A133726 Möbius transform of the Pell numbers (A000129).
1, 1, 4, 10, 28, 64, 168, 396, 980, 2348, 5740, 13780, 33460, 80612, 194992, 470424, 1136688, 2743160, 6625108, 15992040, 38613792, 93216616, 225058680, 543325464, 1311738092, 3166782500, 7645369060, 18457475260, 44560482148, 107578322912, 259717522848
Offset: 1
Keywords
Examples
a(4) = 10 = (0, -1, 0, 1) dot (1, 2, 5, 12) = (0, -2, 0, 12).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*(<<0|1>, <1|2>>^d. <<0,1>>)[1,1], d=divisors(n)): seq(a(n), n=1..40); # Alois P. Heinz, Sep 26 2011
-
Mathematica
a[n_] := Sum[MoebiusMu[n/d]*(MatrixPower[{{0, 1}, {1, 2}}, d]. {0, 1})[[1]], {d, Divisors[n]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=1} mu(k) * x^k / (1 - 2*x^k - x^(2*k)). - Ilya Gutkovskiy, Feb 06 2020