cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133738 Expansion of product of 3rd order mock theta function phi(q) and Ramanujan theta function f(-q) in powers of q.

Original entry on oeis.org

1, 0, -2, -2, 2, 2, -2, 0, 2, 4, -2, -4, 2, 0, -2, -2, 2, 4, -4, -4, 2, 2, -2, 0, 4, 4, 0, -6, 2, 0, -2, 0, 2, 6, -4, -4, 4, 0, -4, -2, 0, 4, -2, -4, 2, 0, 0, 0, 4, 4, -2, -6, 2, 0, -6, 2, 2, 8, 0, -4, 2, 0, 0, 0, 2, 2, -6, -4, 2, 0, -2, 0, 4, 4, 0, -6, 2, -2
Offset: 0

Views

Author

Michael Somos, Sep 22 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x^2 - 2*x^3 + 2*x^4 + 2*x^5 - 2*x^6 + 2*x^8 + 4*x^9 - 2*x^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = Quotient[ Sqrt[24 n + 1] - 1, 6]}, SeriesCoefficient[ Sum[ (-1)^k x^(k (3 k + 1)/2) (1 + x^k) / (1 + x^(2 k)), {k, -m, m}], {x, 0, n}]]]; (* Michael Somos, Jul 26 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, (sqrtint(24*n + 1) - 1) \ 6, (-1)^k * x^(k*(3*k + 1)/2) * (1 + x^k) / (1 + x^(2*k)), x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + x * O(x^(n - (k-1)^2)), 1) * eta(x + x * O(x^n)), n))};

Formula

G.f.: Sum_{k in Z} (-1)^k * x^(k*(3*k + 1)/2) * (1 + x^k) / (1 + x^(2*k)).
G.f.: ( Product_{k>0} 1 - x^k ) * ( 1 + Sum_{k>0} x^k^2 / ((1 + x^2) * (1 + x^4) * ... * (1 + x^(2*k))) ).
Convolution of A053250 and A010815.