cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133742 Decimal expansion of cap height at which the area of a circular segment equals 1/4 that of the entire circle.

Original entry on oeis.org

5, 9, 6, 0, 2, 7, 2, 4, 6, 7, 0, 0, 4, 8, 2, 7, 9, 0, 6, 8, 1, 0, 3, 8, 2, 5, 9, 9, 3, 3, 6, 8, 4, 5, 5, 7, 0, 9, 7, 7, 6, 4, 0, 3, 5, 4, 2, 5, 9, 0, 1, 5, 7, 7, 7, 4, 9, 9, 0, 2, 3, 9, 8, 2, 6, 6, 1, 2, 9, 4, 5, 0, 0, 2, 8, 7, 0, 4, 6, 4, 6, 4, 9, 8, 7, 5, 6, 6, 0, 9, 8, 3, 4, 7, 7, 7, 2, 7, 1, 2, 9, 0, 5, 0, 8
Offset: 0

Views

Author

Eric W. Weisstein, Sep 22 2007

Keywords

Examples

			0.5960272467004827906810382599336845570977640354259015777499...
		

References

  • Mutiu F. Erinosho, ET Akinlabi, S Pityana, Effect of scanning speed and powder flow rate on the evolving properties of laser metal deposited Ti-6Al-4V/Cu composites, International Journal of Surface Science and Engineering, Volume 10, Issue 3, 2016; DOI: 10.1504/IJSURFSE.2016.076993 (Mentions this number)

Programs

  • Mathematica
    RealDigits[x/.FindRoot[Pi/4 == ArcCos[1 - x] - (1 - x)*Sqrt[x*(2 - x)], {x, 0, 1}, WorkingPrecision -> 200], 10, 100][[1]] (* G. C. Greubel, Nov 16 2018 *)
    RealDigits[Root[{Pi/4 - ArcCos[1 - #] + (1 - #) Sqrt[(2 - #) #] &, 0.5960272}], 10, 100][[1]] (* Eric W. Weisstein, Apr 26 2024 *)
  • PARI
    default(realprecision, 100); solve(x=0,1, acos(1-x) - (1-x)*sqrt(x*(2-x)) - Pi/4) \\ G. C. Greubel, Nov 16 2018