A133743 a(n) is the smallest positive square such that pairwise sums of distinct elements are all distinct.
1, 4, 9, 16, 25, 36, 49, 100, 144, 169, 225, 256, 361, 441, 484, 625, 729, 784, 1156, 1521, 1600, 1764, 2401, 2704, 3364, 4096, 4225, 4356, 4900, 5184, 5929, 6889, 7921, 8836, 9216, 9409, 10404, 11881, 13689, 13924, 14161, 18496, 19321, 20449, 21316
Offset: 1
Keywords
Examples
49 is in the sequence since the pairwise sums of distinct elements of {1, 4, 9, 16, 25, 36, 49} are all distinct: 5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 74, 85. 64 is not in the sequence since 1 + 64 = 16 + 49.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..4948
- Eric Weisstein's World of Mathematics, B2-Sequence
- Index entries for B_2 sequences
Programs
-
Python
from itertools import count, islice def A133743_gen(): # generator of terms aset2, alist = set(), [] for k in map(lambda x:x**2, count(1)): bset2 = set() for a in alist: if (b:=a+k) in aset2: break bset2.add(b) else: yield k alist.append(k) aset2.update(bset2) A133743_list = list(islice(A133743_gen(),30)) # Chai Wah Wu, Sep 11 2023