cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133766 a(n) = (4*n+1)*(4*n+3)*(4*n+5).

Original entry on oeis.org

15, 315, 1287, 3315, 6783, 12075, 19575, 29667, 42735, 59163, 79335, 103635, 132447, 166155, 205143, 249795, 300495, 357627, 421575, 492723, 571455, 658155, 753207, 856995, 969903, 1092315, 1224615, 1367187, 1520415, 1684683, 1860375, 2047875, 2247567, 2459835
Offset: 0

Views

Author

Miklos Kristof, Jan 02 2008

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.

Crossrefs

Programs

  • Maple
    seq((4*n+1)*(4*n+3)*(4*n+5),n=0..40);
  • Mathematica
    Table[c=4n;(c+1)(c+3)(c+5),{n,0,30}] (* or *) LinearRecurrence[{4,-6,4,-1},{15,315,1287,3315},30] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    a(n)=(4*n+1)*(4*n+3)*(4*n+5) \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: 3*(5 + 85*x + 39*x^2 - x^3)/(1-x)^4 .
E.g.f: (15 + 300*x + 336*x^2 + 64*x^3)*exp(x) .
Sum_{n>=0} 4/a(n) = (Pi-2)/4. [Jolley, eq. 238]
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Harvey P. Dale, May 06 2012
Sum_{n>=0} (-1)^n/a(n) = 1/8 + (log(2*sqrt(2)+3) - Pi)/(16*sqrt(2)). - Amiram Eldar, Feb 27 2022