A055213 Number of n-piece positions at checkers, for n=1 ... 24.
120, 6972, 261224, 7092774, 148688232, 2503611964, 34779531480, 406309208481, 4048627642976, 34778882769216, 259669578902016, 1695618078654976, 9726900031328256, 49134911067979776, 218511510918189056, 852888183557922816
Offset: 1
Examples
n=1: A red piece can go on any of 28 squares (it can't reside on the last row) and a red king can be on any of 32 squares. Double that to include black, total of 120.
References
- Jonathan Schaeffer, N. Burch, Yngvi Bjornsson, Akihiro Kishimoto, Martin Muller, Rob Lake, Paul Lu and Steve Sutphen. "Checkers Is Solved", Science, Vol. 317, September 14, 2007, pp. 1518-1522.
- Jonathan Schaeffer, Yngvi Bjornsson, N. Burch, Akihiro Kishimoto, Martin Muller, Rob Lake, Paul Lu and Steve Sutphen. Solving Checkers, International Joint Conference on Artificial Intelligence (IJCAI), pp. 292-297, 2005. Distinguished Paper Prize.
Links
- J. Schaeffer, Table of n, a(n) for n = 1..24 (complete sequence)
- J. Schaeffer, Chinook: Full sequence and more info
- J. Schaeffer, Chinook: Publications
- J. Schaeffer and R. Lake, Solving the game of checkers, in: R. Nowakowski (ed.), Games of No Chance (1996), p. 119-133.
- Yngvi Bjornsson, N. Burch, Rob Lake, Joe Culberson, Paul Lu, Jonathan Schaeffer, Steve Sutphen, Chinook: Total Number of Positions
Crossrefs
A133803(n) = floor log a(n).
Comments