cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A133859 Smallest odd prime base q such that p^9 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

7681, 39367, 7812499, 135967277, 4715895383, 822557039, 48718117843, 513127081109, 147534349327, 21203414421907, 52879244321341, 15069267560119, 798099274499279, 164129642266943, 1740228634955257, 149381307185023
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(9) = 7681.
a(2) = A125609(9) = 39367.
a(3) = A125610(9) = 7812499.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^9 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133860 Smallest odd prime base q such that p^10 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

12289, 472391, 78124999, 135967277, 24262286441, 38050596989, 5498076927457, 8388044818849, 30794280412669, 45941644105613, 1205285836084793, 7909086479714171, 1438991183761177, 47101607991825047, 18067554193458689
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(10) = 12289.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^10 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133861 Smallest odd prime base q such that p^11 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

12289, 1062881, 292968749, 7909306973, 1194631280321, 2395794301259, 38413406256881, 77460384757423, 30794280412669, 4161130688896397, 3748333074529501, 240404931594746129, 191828075390557213
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(11) = 12289.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^11 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133862 Smallest odd prime base q such that p^12 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

12289, 1062881, 853235443, 92233439147, 3143820659087, 58713568184837, 2359162908109223, 2649283656602003, 53928980532177631, 557792163777408809, 2084452633098194627, 8958368398788306367, 15810453676175767201
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(12) = 12289.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^12 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133863 Smallest odd prime base q such that p^13 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

40961, 19131877, 2441406251, 115385868869, 138090848575723, 358661570404751, 44510586506850631, 252317900773542353, 4465433274456775633, 39171440762351329829, 11887418854442931407, 14582408526413537791
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(13) = 40961.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^13 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009

A133864 Smallest odd prime base q such that p^14 divides q^(p-1) - 1, where p = prime(n).

Original entry on oeis.org

65537, 19131877, 53834264557, 1356446145697, 488581592070877, 22771419458231473, 346100334752156863, 2467410166021233673, 19165875476832528551, 61879867860030528131, 1106827928513014993387
Offset: 1

Views

Author

Alexander Adamchuk, Sep 26 2007

Keywords

Examples

			a(1) = A035089(14) = 65537.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ !PowerMod[ Prime[ k ], Prime[ n ] - 1, Prime[ n ]^14 ] == 1, k++ ]; Print[ { n, Prime[ k ] } ], {n, 1, 100} ]

Extensions

Extended by Max Alekseyev, May 08 2009
Showing 1-6 of 6 results.