A133907 Least prime number p such that binomial(n+p, p) mod p = 1.
2, 3, 5, 2, 2, 7, 11, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 29, 2, 2, 5, 3, 2, 2, 31, 37, 2, 2, 37, 37, 2, 2, 3, 41, 2, 2, 43, 47, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 59, 61, 2, 2, 67, 3, 2, 2, 67, 71, 2, 2, 71, 73, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 89, 2, 2, 3, 3, 2, 2, 97
Offset: 1
Keywords
Examples
a(2)=3, since binomial(2+3,3) mod 3 = 10 mod 3 = 1 and 3 is the minimal prime number with this property. a(7)=11 because of binomial(7+11, 11) = 31824 = 2893*11 + 1, but binomial(7+k, k) mod k <> 1 for all primes < 11.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m; m:= 2: while floor(n/m) mod m <> 0 do m:= nextprime(m) od: m end proc: map(f, [$1..100]); # Robert Israel, May 11 2017
-
Mathematica
a[n_] := Module[{p}, For[p = 2, True, p = NextPrime[p], If[Mod[Binomial[n+p, p], p] == 1, Return[p]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 05 2023 *)
-
PARI
a(n) = my(p=2); while (binomial(n+p, p) % p != 1, p = nextprime(p+1)); p; \\ Michel Marcus, Dec 17 2022
-
Python
from sympy import nextprime, ff def A133907(n): p, m = 2, (n+2)*(n+1)>>1 while m%p != 1: q = nextprime(p) m = m*ff(n+q,q-p)//ff(q,q-p) p = q return p # Chai Wah Wu, Feb 22 2023
Comments