A133954 Difference between the numbers of nonnegative evil and odious multiples of p_n less than 2^p_n, where p_n = n-th prime.
0, 3, 5, -7, 11, 13, 697, 19, -23, 29, -237367, 37, 97129, 44250483, -47, 53, 59, 61, 67, -71, 1325443061345, -79, 83, 6096136101052865, 6711137545, 101, -103, 107, 197096207419453, 1733616652657, -16388345406766785202757351, 131, 904581545
Offset: 1
Keywords
Examples
Consider p_2=3; since 0,3,6 are evil, then a(2) = 3 - 0 = 3.
Links
- J. Coquet, A summation formula related to the binary digits, Invent. Math. 73 (1983) 107-115.
- M. Drmota and M. Skalba, Rarified sums of the Thue-Morse sequence, Trans. of the AMS 352 No. 2 (1999) 609-642.
- D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
- V. Shevelev, On the Newman sum over multiples of a prime with a primitive or semiprimitive root 2, arXiv:0710.1354 [math.NT], 2007.
- V. Shevelev, Generalized Newman phenomena and digit conjectures on primes, Internat. J. of Mathematics and Math. Sciences, 2008 (2008), Article ID 908045, 1-12.
- V. Shevelev, Exact exponent of remainder term of Gelfond's digit theorem in the binary case, Acta Arithmetica 136 (2009) 91-100.
- I. Shparlinski, On the size of the Gelfond exponent, J. of Number Theory, 130, no.4 (2010), 1056-1060.
Programs
-
PARI
a(p)=o=e=vector(p,i,0);e[p]=1;r=1;for(i=1,p,o2=e2=vector(p);for(j=1,p,w=(j-r)%p;if(w==0,w=p);o2[j]=o[j]+e[w];e2[j]=e[j]+o[w]);o=o2;e=e2;r=(2*r)%p);return(e[p]-o[p]) \\ Robert Gerbicz, Jan 03 2011
Formula
a(n) = p_n if 2 is a primitive root of p_n (A001122); a(n) = -p_n if p_n is in A139035, i.e., -2 is a primitive root of p_n [Shevelev, 2007]. No other exact regularity of the sequence is known until now. - Vladimir Shevelev, Oct 26 2014
Extensions
Extended by Robert Gerbicz, Jan 03 2011
Comments