A134028 Reversal of n in balanced ternary representation.
0, 1, -2, 1, 4, -11, -2, 7, -8, 1, 10, -5, 4, 13, -38, -11, 16, -29, -2, 25, -20, 7, 34, -35, -8, 19, -26, 1, 28, -17, 10, 37, -32, -5, 22, -23, 4, 31, -14, 13, 40, -119, -38, 43, -92, -11, 70, -65, 16, 97, -110, -29, 52, -83, -2, 79, -56, 25, 106, -101, -20, 61, -74, 7, 88, -47, 34, 115, -116, -35, 46, -89, -8, 73, -62, 19, 100
Offset: 0
Examples
20 = 1*3^3 - 1*3^2 + 1*3^1 - 1*3^0 == '+-+-' => a(20) = -1*3^3 + 1*3^2 - 1*3^1 + 1*3^0 = -20; 21 = 1*3^3 - 1*3^2 + 1*3^1 + 0*3^0 == '+-+0' => a(21) = 0*3^3 + 1*3^2 - 1*3^1 + 1*3^0 = 7; 22 = 1*3^3 - 1*3^2 + 1*3^1 + 1*3^0 == '+-++' => a(22) = 1*3^3 + 1*3^2 - 1*3^1 + 1*3^0 = 34; 23 = 1*3^3 + 0*3^2 - 1*3^1 - 1*3^0 == '+0--' => a(23) = -1*3^3 - 1*3^2 + 0*3^1 + 1*3^0 = -35; 24 = 1*3^3 + 0*3^2 - 1*3^1 + 0*3^0 == '+0-0' => a(24) = 0*3^3 - 1*3^2 + 0*3^1 + 1*3^0 = -8; 25 = 1*3^3 + 0*3^2 - 1*3^1 + 1*3^0 == '+0-+' => a(25) = 1*3^3 - 1*3^2 + 0*3^1 + 1*3^0 = 19.
References
- D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, Vol 2, pp 173-175.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Reversal
- Wikipedia, Balanced Ternary
Crossrefs
Programs
-
Python
def a(n): if n==0: return 0 s=[] x=0 while n>0: x=n%3 n=n//3 if x==2: x=-1 n+=1 s.append(x) l=s[::-1] return sum(l[i]*3**i for i in range(len(l))) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 10 2017
Comments