A323783 a(n) = A134028(A323782(n)): Primes and negated primes such that the reverse of the balanced ternary representation is a prime.
-2, -11, 7, -5, 13, -29, -17, 37, 31, 43, -83, -101, 61, -89, 73, -53, -71, -59, 103, -173, 313, -353, 241, -137, -263, 223, 331, 277, 181, -269, 163, -179, -233, 199, -347, 139, 193, -311, -149, 367, 853, 691, -929, -443, -983, 421, -389, -839, 457, -677
Offset: 1
Examples
-17 is a term: -17 is -+0+ in balanced ternary notation -+0+ reversed is +0+- +0+- is 29 in balanced ternary notation 29 is prime Therefore -17 is "warped" to 29. This operation is reversible: 29 "warps" to -17.
Links
- Github, Python code repository
- Rosetta Code, Balanced Ternary Code
- Wikipedia, Balanced Ternary
Programs
-
PARI
d3(n) = if ((n%3)==2, n\3+1, n\3); m3(n) = if ((n%3)==2, -1, n % 3); t(n) = if (n==0, [0], if (abs(n) == 1, [n], concat(m3(n), t(d3(n))))); f(n) = subst(Pol(Vec(t(n))), x, 3); lista(nn) = {forprime(n=1, nn, if (isprime(abs(f(n))), print1(f(n), ", ")););} \\ Michel Marcus, Jan 29 2019
-
Python
# See Github link.
Comments