A323784 Prime numbers such that the reverse of the balanced ternary representation is neither prime nor a negated prime.
3, 19, 23, 41, 47, 67, 79, 97, 107, 109, 113, 127, 131, 151, 157, 167, 191, 197, 211, 227, 229, 239, 251, 257, 271, 281, 283, 293, 307, 317, 337, 349, 359, 397, 409, 419, 431, 433, 439, 461, 463, 491, 503, 521, 523, 557, 563, 571, 577, 587, 593, 617, 619, 631, 641, 647, 653, 659, 661, 673, 683, 701, 733, 743, 769, 787, 797
Offset: 1
Examples
79 is a term: 79 is +00-+ in balanced ternary notation +00-+ reversed is +-00+ +-00+ is 55 in balanced ternary notation 55 prime factors are 5 and 11 Therefore 55 is not prime. Therefore the prime number 79 "warps" to the nonprime number 55. This operation is reversible: 55 "warps" to 79.
Links
- Github, Python code repository
- Rosetta Code, Balanced Ternary Code
- Wikipedia, Balanced Ternary
Programs
-
PARI
d3(n) = if ((n%3)==2, n\3+1, n\3); m3(n) = if ((n%3)==2, -1, n % 3); t(n) = if (n==0, [0], if (abs(n) == 1, [n], concat(m3(n), t(d3(n))))); f(n) = subst(Pol(Vec(t(n))), x, 3); isok(n) = isprime(n) && !isprime(abs(f(n))); \\ Michel Marcus, Jan 29 2019
-
Python
# See Github link.
Comments