cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134041 a(n) = number of binary partitions of the Fibonacci number F(n).

Original entry on oeis.org

1, 2, 2, 4, 6, 14, 36, 114, 450, 2268, 14442, 118686, 1264678, 17519842, 318273566, 7607402556, 240151303078, 10055927801538, 559859566727028, 41582482495661986, 4129785050606801246, 549628445573614296188, 98256218721544814784486, 23631541930531250077261282
Offset: 0

Views

Author

Paul D. Hanna, Oct 02 2007

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(b, n) option remember; local t; if b<0 then 0 elif b=0 or n=0 then 1 elif b>=n then add(g(b-t, n) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1) else g(b-1, n) +g(2*b, n-1) fi end: f:= proc(n) local t; t:= ilog2(2*n+1); g(n/2^(t-1), t) end: a:= n-> f(combinat[fibonacci](n)): seq(a(n), n=0..25);  # Alois P. Heinz, Sep 26 2011
  • Mathematica
    g[b_, n_] := g[b, n] = If[b < 0, 0, If[b == 0 || n == 0, 1, If[b >= n, Sum[g[b - t, n] Binomial[n + 1, t] (-1)^(t + 1), {t, 1, n + 1}], g[b - 1, n] + g[2b, n - 1]]]];
    f[n_] := With[{t = Floor@Log[2, 2n + 1]}, g[n/2^(t - 1), t]];
    a[n_] := f[Fibonacci[n]];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)

Formula

a(n) = A000123( A000045(n) ) for n>=0.