A134041 a(n) = number of binary partitions of the Fibonacci number F(n).
1, 2, 2, 4, 6, 14, 36, 114, 450, 2268, 14442, 118686, 1264678, 17519842, 318273566, 7607402556, 240151303078, 10055927801538, 559859566727028, 41582482495661986, 4129785050606801246, 549628445573614296188, 98256218721544814784486, 23631541930531250077261282
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..125
Programs
-
Maple
g:= proc(b, n) option remember; local t; if b<0 then 0 elif b=0 or n=0 then 1 elif b>=n then add(g(b-t, n) *binomial(n+1, t) *(-1)^(t+1), t=1..n+1) else g(b-1, n) +g(2*b, n-1) fi end: f:= proc(n) local t; t:= ilog2(2*n+1); g(n/2^(t-1), t) end: a:= n-> f(combinat[fibonacci](n)): seq(a(n), n=0..25); # Alois P. Heinz, Sep 26 2011
-
Mathematica
g[b_, n_] := g[b, n] = If[b < 0, 0, If[b == 0 || n == 0, 1, If[b >= n, Sum[g[b - t, n] Binomial[n + 1, t] (-1)^(t + 1), {t, 1, n + 1}], g[b - 1, n] + g[2b, n - 1]]]]; f[n_] := With[{t = Floor@Log[2, 2n + 1]}, g[n/2^(t - 1), t]]; a[n_] := f[Fibonacci[n]]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)