cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134055 a(n) = Sum_{k=1..n} C(n-1,k-1) * S2(n,k) for n>0, a(0)=1, where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.

Original entry on oeis.org

1, 1, 2, 8, 41, 252, 1782, 14121, 123244, 1169832, 11960978, 130742196, 1518514076, 18645970943, 241030821566, 3268214127548, 46338504902485, 685145875623056, 10538790233183702, 168282662416550040, 2784205185437851772, 47646587512911994120
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2007

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 41*x^4 + 252*x^5 + 1782*x^6 + 14121*x^7 +...
where
A(x) = 1 + x/(1-x)*exp(-x/(1-x)) + 2^2*x^2/(1-2*x)^2*exp(-2*x/(1-2*x))/2! + 3^3*x^3/(1-3*x)^3*exp(-3*x/(1-3*x))/3! + 4^4*x^4/(1-4*x)^4*exp(-4*x/(1-4*x))/4! +...
simplifies to a power series in x with integer coefficients.
Illustrate the definition of the terms by:
a(4) = 1*1 + 3*7 + 3*6 + 1*1 = 41;
a(5) = 1*1 + 4*15 + 6*25 + 4*10 + 1*1 = 252;
a(6) = 1*1 + 5*31 + 10*90 + 10*65 + 5*15 + 1*1 = 1782.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(h, m) option remember; `if`(h=0,
            binomial(n-1, m-1), m*b(h-1, m)+b(h-1, m+1) )
          end; b(n, 0)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,k-1] * StirlingS2[n,k],{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Aug 11 2014 *)
  • PARI
    a(n)=if(n==0,1,sum(k=1, n, binomial(n-1, k-1)*polcoeff(1/prod(i=0, k, 1-i*x +x*O(x^(n-k))), n-k)))
    
  • PARI
    a(n)=polcoeff(sum(k=0,n+1,(k*x)^k/(1-k*x)^k*exp(-k*x/(1-k*x+x*O(x^n)))/k!),n)
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 04 2012

Formula

O.g.f.: Sum_{n>=0} (n*x)^n/(1-n*x)^n * exp(-n*x/(1-n*x)) / n!. - Paul D. Hanna, Nov 04 2012
From Alois P. Heinz, Jun 24 2023: (Start)
a(n) mod 2 = A037011(n) for n >= 1.
a(n) mod 2 = 1 <=> n in { A048297 } or n = 0. (End)

Extensions

An initial '1' was added and definition changed slightly by Paul D. Hanna, Nov 04 2012