A134062 Row sums of triangle A134061.
1, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558, 5368709118, 10737418238
Offset: 0
Examples
a(2) = 18 = sum of row 2 terms, triangle A134061: (3 + 10 + 5). a(3) = 38 = (1, 3, 3, 1) dot (1, 7, 3, 7) = (1 + 21 + 9 + 7).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Cf. A134061.
Programs
-
Mathematica
a=8; lst={1, a}; k=10; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *) Flatten[{1, Table[5*2^n-2, {n, 1, 40}]}] (* Vaclav Kotesovec, Jan 26 2015 *) LinearRecurrence[{3,-2},{1,8,18},40] (* Harvey P. Dale, Dec 17 2024 *)
-
PARI
Vec(-(4*x^2-5*x-1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Nov 17 2015
Formula
For n > 0, a(n) = 5*2^n - 2. - Vaclav Kotesovec, Jan 26 2015
From Colin Barker, Nov 17 2015: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
G.f.: -(4*x^2-5*x-1) / ((x-1)*(2*x-1)). (End)
Extensions
More terms from Jon E. Schoenfield, Jan 25 2015
Comments