cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134063 a(n) = (1/2)*(3^n - 2^(n+1) + 3).

Original entry on oeis.org

1, 1, 2, 7, 26, 91, 302, 967, 3026, 9331, 28502, 86527, 261626, 788971, 2375102, 7141687, 21457826, 64439011, 193448102, 580606447, 1742343626, 5228079451, 15686335502, 47063200807, 141197991026, 423610750291, 1270865805302, 3812664524767, 11438127792026
Offset: 0

Views

Author

Ross La Haye, Jan 11 2008

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n-1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 2) x = y.
The inverse binomial transform yields A033484 with another leading 1. - R. J. Mathar, Jul 06 2009

Examples

			a(3) = 7 because for P(A) = {{},{1},{2},{1,2}} we have: case 0 {{1},{2}}, case 1 {{1},{1,2}}, {{2},{1,2}}, case 2 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}.
		

Crossrefs

Programs

  • Maple
    f := n -> (1/2)*(3^n - 2^(n+1) + 3);
  • Mathematica
    Table[(3^n-2^(n+1)+3)/2,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,1,2},30] (* Harvey P. Dale, May 05 2020 *)

Formula

a(n) = 3*StirlingS2(n,3) + StirlingS2(n,2) + 1.
a(n) = StirlingS2(n+1,3) + 1. - Ross La Haye, Jan 21 2008
a(n) = 6 a(n-1)-11 a(n-2) +6 a(n-3) (n >= 3). Also a(n) = 4 a(n-1)-3 a(n-2)+ 2^{n-2} (n >= 3). - Tian-Xiao He (the(AT)iwu.edu), Jul 02 2009
G.f.: -(1-4*x+6*x^2)/((x-1)*(3*x-1)*(2*x-1)). a(n+1)-a(n)=A001047(n+1). [R. J. Mathar, Jul 06 2009]

Extensions

Edited by N. J. A. Sloane, Jul 06 2009