A134081 Triangle T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1), read by rows.
1, 2, 1, 3, 5, 1, 4, 12, 8, 1, 5, 22, 26, 11, 1, 6, 35, 60, 45, 14, 1, 7, 51, 115, 125, 69, 17, 1, 8, 70, 196, 280, 224, 98, 20, 1, 9, 92, 308, 546, 574, 364, 132, 23, 1, 10, 117, 456, 966, 1260, 1050, 552, 171, 26, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 1; 3, 5, 1; 4, 12, 8, 1; 5, 22, 26, 11, 1; 6, 35, 60, 45, 14, 1; 7, 51, 115, 125, 69, 17, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
A134081:= func< n,k | Binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1) >; [A134081(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
Mathematica
T[n_, k_]:= Binomial[n, k]*((2*k+1)*(n-k) +k+1)/(k+1); Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
-
Sage
def A134081(n,k): return binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1) flatten([[A134081(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
Formula
Binomial transform of A112295(unsigned).
From G. C. Greubel, Feb 17 2021: (Start)
T(n, k) = binomial(n, k)*((2*k+1)*(n-k) +k+1)/(k+1).
Sum_{k=0..n} T(n, k) = 2^n *n + 1 = A002064(n). (End)