A134094 Binomial convolution of the Stirling numbers of the second kind.
1, 2, 6, 26, 140, 887, 6405, 51564, 455712, 4370567, 45081476, 496556194, 5806502663, 71734434956, 932447207866, 12707973761320, 181033752071568, 2688530124711819, 41525910256013832, 665674913113633582
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..517
Programs
-
Maple
f:= proc(n) local k; add(binomial(n+1,k)*combinat:-stirling2(n,k),k=0..n) end proc: map(f, [$0..30]); # Robert Israel, Oct 16 2019
-
Mathematica
Table[Sum[Binomial[n + 1, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)*polcoeff((1-k*x)/prod(i=0,k+1,1-i*x+x*O(x^(n))),n-k))}
Formula
a(n) = sum( C(n+1,k)*|S2(n,k)|, k=0..n).
Row sums of triangle A134090.
a(n) = [x^n] Sum_{k=0..n} C(n,k)*x^k*(1-k*x) / [Product_{i=0..k+1}(1-i*x)], equivalently, a(n) = Sum_{k=0..n} C(n,k)*[S2(n,k) - k*S2(n-1,k)], where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
a(n) = Sum_{k=0..n} C(n+1,k)*S2(n,k). From Olivier Gérard, Oct 23 2012
Extensions
Definition modified and Mathematica program by Olivier Gérard, Oct 23 2012
Simplified Name and moved formulas into the formula section. - Paul D. Hanna, Oct 23 2013
Comments