cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134094 Binomial convolution of the Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 6, 26, 140, 887, 6405, 51564, 455712, 4370567, 45081476, 496556194, 5806502663, 71734434956, 932447207866, 12707973761320, 181033752071568, 2688530124711819, 41525910256013832, 665674913113633582
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2007

Keywords

Comments

Row n of triangle T=A134090 = row n of (I + D*C)^n for n>=0 where C denotes Pascal's triangle, I the identity matrix and D a matrix where D(n+1,n)=1 and zeros elsewhere.

Crossrefs

Cf. A134090; columns: A122455, A134091, A134092, A134093; A048993 (S2).
Cf. A000110.

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n+1,k)*combinat:-stirling2(n,k),k=0..n) end proc:
    map(f, [$0..30]); # Robert Israel, Oct 16 2019
  • Mathematica
    Table[Sum[Binomial[n + 1, k] StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*polcoeff((1-k*x)/prod(i=0,k+1,1-i*x+x*O(x^(n))),n-k))}

Formula

a(n) = sum( C(n+1,k)*|S2(n,k)|, k=0..n).
Row sums of triangle A134090.
a(n) = [x^n] Sum_{k=0..n} C(n,k)*x^k*(1-k*x) / [Product_{i=0..k+1}(1-i*x)], equivalently, a(n) = Sum_{k=0..n} C(n,k)*[S2(n,k) - k*S2(n-1,k)], where S2(n,k) = A048993(n,k) are Stirling numbers of the 2nd kind.
a(n) = Sum_{k=0..n} C(n+1,k)*S2(n,k). From Olivier Gérard, Oct 23 2012

Extensions

Definition modified and Mathematica program by Olivier Gérard, Oct 23 2012
Simplified Name and moved formulas into the formula section. - Paul D. Hanna, Oct 23 2013