cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134104 Complete list of solutions to y^2 = x^3 + 297; sequence gives y values.

Original entry on oeis.org

9, 17, 18, 19, 45, 199, 333, 50265, 28748141
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007

Keywords

Comments

For corresponding x values see A134105.

Examples

			a(1)^2 = 9^2 = 81 = A134105(1)^3 + 297 = -216 + 297.
a(2)^2 = 17^2 = 289 = A134105(2)^3 + 297 = -8 + 297.
a(3)^2 = 18^2 = 324 = A134105(3)^3 + 297 = 27 + 297.
a(4)^2 = 19^2 = 361 = A134105(4)^3 + 297 = 64 + 297.
a(5)^2 = 45^2 = 2025 = A134105(5)^3 + 297 = 1728 + 297.
a(6)^2 = 199^2 = 39601 = A134105(6)^3 + 297 = 39304 + 297.
a(7)^2 = 333^2 = 110889 = A134105(7)^3 + 297 = 110592 + 297.
a(8)^2 = 50265^2 = 2526570225 = A134105(8)^3 + 297 = 2526569928 + 297.
a(9)^2 = 28748141^2 = 826455610955881 = A134105(9)^3 + 297 = 826455610955584 + 297.
		

Crossrefs

Programs

  • Magma
    Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 297])) ]); /* adapted from A029727 */
  • Mathematica
    sol[x_] := Solve[y > 0 && x^3 - y^2 == -297, y, Integers];
    Reap[For[x = 1, x < 10^5, x++, sx = sol[x]; If[sx != {}, xy = {x, y} /. sx[[1]]; Print[xy]; Sow[xy]]; sx = sol[-x]; If[sx != {}, xy = {-x, y} /. sx[[1]]; Print[xy]; Sow[xy]]]][[2, 1]][[All, 2]] // Sort (* Jean-François Alcover, Feb 07 2020 *)