A134108 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 + n.
3, 1, 1, 1, 1, 0, 0, 4, 5, 1, 0, 2, 0, 0, 2, 1, 8, 1, 1, 0, 0, 1, 0, 4, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 2, 3, 4, 0, 0, 2, 0, 0, 1, 1, 6, 0, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 6, 2, 0, 0, 0, 1
Offset: 1
Keywords
Examples
y^2 = x^3 + 1 has solutions (y, x) = (0, -1), (1, 0) and (3, 2), hence a(1) = 3. y^2 = x^3 + 6 has no solutions, hence a(6) = 0. y^2 = x^3 + 17 has 8 solutions (see A029727, A029728), hence a(17) = 8. y^2 = x^3 + 27 has solution (y, x) = (0, -3), hence a(27) = 1.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..10000
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- Eric Weisstein's World of Mathematics, Mordell Curve
Programs
-
Magma
[ #{ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, n])) }: n in [1..122] ];
-
Mathematica
(* This naive approach gives correct results up to n=1000 *) xmax[] = 10^4; Do[ xmax[n] = 10^5, {n, {297, 377, 427, 885, 899}}]; Do[ xmax[n] = 10^6, {n, {225, 353, 618}}]; f[n] := (x = -Ceiling[n^(1/3)] - 1; s = {}; While[x <= xmax[n], x++; y2 = x^3 + n; If[y2 >= 0, y = Sqrt[y2]; If[IntegerQ[y], AppendTo[s, y]]]]; s); a[n_] := a[n] = (fn = f[n]; an = If[fn == {}, 0, 2 Length[fn] - If[First[fn] == 0, 1, 0]]; If[EvenQ[an], an/2, (an + 1)/2]); Table[ Print["a[", n, "] = ", a[n] ]; a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 20 2012 *) A081119 = Cases[Import["https://oeis.org/A081119/b081119.txt", "Table"], {, }][[All, 2]]; a[n_] := With[{an = A081119[[n]]}, If[EvenQ[an], an/2, (an + 1)/2]]; a /@ Range[10000] (* Jean-François Alcover, Nov 24 2019 *)
Comments