A134136 a(n) = 2*a(n-2) + 4*a(n-3), with initial terms 0, 1, 1.
0, 1, 1, 2, 6, 8, 20, 40, 72, 160, 304, 608, 1248, 2432, 4928, 9856, 19584, 39424, 78592, 157184, 314880, 628736, 1258496, 2516992, 5031936, 10067968, 20131840, 40263680, 80535552, 161054720, 322125824, 644251648, 1288470528, 2577006592, 5153947648, 10307895296
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..2991
- Index entries for linear recurrences with constant coefficients, signature (0,2,4).
Crossrefs
Cf. A038521.
Programs
-
Magma
[n le 3 select Floor(n/2) else 2*Self(n-2)+4*Self(n-3): n in [1..40]]; // Vincenzo Librandi, May 28 2015
-
Maple
f:= gfun:-rectoproc({a(n)=2*a(n-2)+4*a(n-3), a(0)=0,a(1)=1,a(2)=1},a(n),remember): seq(f(n),n=0..100); # Robert Israel, May 27 2015
-
Mathematica
Nest[Append[#, 2 #[[-2]] + 4 #[[-3]]] &, {0, 1, 1}, 15] (* Ivan Neretin, May 27 2015 *) CoefficientList[Series[x (1 + x)/((1 - 2 x) (2 x^2 + 2 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2015 *)
Formula
a(n) = (6*2^n - (3+i)*(-1+i)^n - (3-i)*(-1-i)^n)/20. - Ivan Neretin, May 27 2015
G.f.: (x^2+x)/(1-2*x^2-4*x^3). - Robert Israel, May 27 2015
Extensions
More terms from Robert Israel, May 27 2015